| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lss0cl.z |  |-  .0. = ( 0g ` W ) | 
						
							| 2 |  | lss0cl.s |  |-  S = ( LSubSp ` W ) | 
						
							| 3 | 2 | lssn0 |  |-  ( U e. S -> U =/= (/) ) | 
						
							| 4 |  | n0 |  |-  ( U =/= (/) <-> E. x x e. U ) | 
						
							| 5 | 3 4 | sylib |  |-  ( U e. S -> E. x x e. U ) | 
						
							| 6 | 5 | adantl |  |-  ( ( W e. LMod /\ U e. S ) -> E. x x e. U ) | 
						
							| 7 |  | simp1 |  |-  ( ( W e. LMod /\ U e. S /\ x e. U ) -> W e. LMod ) | 
						
							| 8 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 9 | 8 2 | lssel |  |-  ( ( U e. S /\ x e. U ) -> x e. ( Base ` W ) ) | 
						
							| 10 | 9 | 3adant1 |  |-  ( ( W e. LMod /\ U e. S /\ x e. U ) -> x e. ( Base ` W ) ) | 
						
							| 11 |  | eqid |  |-  ( -g ` W ) = ( -g ` W ) | 
						
							| 12 | 8 1 11 | lmodsubid |  |-  ( ( W e. LMod /\ x e. ( Base ` W ) ) -> ( x ( -g ` W ) x ) = .0. ) | 
						
							| 13 | 7 10 12 | syl2anc |  |-  ( ( W e. LMod /\ U e. S /\ x e. U ) -> ( x ( -g ` W ) x ) = .0. ) | 
						
							| 14 | 11 2 | lssvsubcl |  |-  ( ( ( W e. LMod /\ U e. S ) /\ ( x e. U /\ x e. U ) ) -> ( x ( -g ` W ) x ) e. U ) | 
						
							| 15 | 14 | anabsan2 |  |-  ( ( ( W e. LMod /\ U e. S ) /\ x e. U ) -> ( x ( -g ` W ) x ) e. U ) | 
						
							| 16 | 15 | 3impa |  |-  ( ( W e. LMod /\ U e. S /\ x e. U ) -> ( x ( -g ` W ) x ) e. U ) | 
						
							| 17 | 13 16 | eqeltrrd |  |-  ( ( W e. LMod /\ U e. S /\ x e. U ) -> .0. e. U ) | 
						
							| 18 | 17 | 3expia |  |-  ( ( W e. LMod /\ U e. S ) -> ( x e. U -> .0. e. U ) ) | 
						
							| 19 | 18 | exlimdv |  |-  ( ( W e. LMod /\ U e. S ) -> ( E. x x e. U -> .0. e. U ) ) | 
						
							| 20 | 6 19 | mpd |  |-  ( ( W e. LMod /\ U e. S ) -> .0. e. U ) |