Step |
Hyp |
Ref |
Expression |
1 |
|
lss0cl.z |
|- .0. = ( 0g ` W ) |
2 |
|
lss0cl.s |
|- S = ( LSubSp ` W ) |
3 |
|
eqidd |
|- ( W e. LMod -> ( Scalar ` W ) = ( Scalar ` W ) ) |
4 |
|
eqidd |
|- ( W e. LMod -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) ) |
5 |
|
eqidd |
|- ( W e. LMod -> ( Base ` W ) = ( Base ` W ) ) |
6 |
|
eqidd |
|- ( W e. LMod -> ( +g ` W ) = ( +g ` W ) ) |
7 |
|
eqidd |
|- ( W e. LMod -> ( .s ` W ) = ( .s ` W ) ) |
8 |
2
|
a1i |
|- ( W e. LMod -> S = ( LSubSp ` W ) ) |
9 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
10 |
9 1
|
lmod0vcl |
|- ( W e. LMod -> .0. e. ( Base ` W ) ) |
11 |
10
|
snssd |
|- ( W e. LMod -> { .0. } C_ ( Base ` W ) ) |
12 |
1
|
fvexi |
|- .0. e. _V |
13 |
12
|
snnz |
|- { .0. } =/= (/) |
14 |
13
|
a1i |
|- ( W e. LMod -> { .0. } =/= (/) ) |
15 |
|
simpr2 |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> a e. { .0. } ) |
16 |
|
elsni |
|- ( a e. { .0. } -> a = .0. ) |
17 |
15 16
|
syl |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> a = .0. ) |
18 |
17
|
oveq2d |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( x ( .s ` W ) a ) = ( x ( .s ` W ) .0. ) ) |
19 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
20 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
21 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
22 |
19 20 21 1
|
lmodvs0 |
|- ( ( W e. LMod /\ x e. ( Base ` ( Scalar ` W ) ) ) -> ( x ( .s ` W ) .0. ) = .0. ) |
23 |
22
|
3ad2antr1 |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( x ( .s ` W ) .0. ) = .0. ) |
24 |
18 23
|
eqtrd |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( x ( .s ` W ) a ) = .0. ) |
25 |
|
simpr3 |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> b e. { .0. } ) |
26 |
|
elsni |
|- ( b e. { .0. } -> b = .0. ) |
27 |
25 26
|
syl |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> b = .0. ) |
28 |
24 27
|
oveq12d |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) = ( .0. ( +g ` W ) .0. ) ) |
29 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
30 |
9 29 1
|
lmod0vlid |
|- ( ( W e. LMod /\ .0. e. ( Base ` W ) ) -> ( .0. ( +g ` W ) .0. ) = .0. ) |
31 |
10 30
|
mpdan |
|- ( W e. LMod -> ( .0. ( +g ` W ) .0. ) = .0. ) |
32 |
31
|
adantr |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( .0. ( +g ` W ) .0. ) = .0. ) |
33 |
28 32
|
eqtrd |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) = .0. ) |
34 |
|
ovex |
|- ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. _V |
35 |
34
|
elsn |
|- ( ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. { .0. } <-> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) = .0. ) |
36 |
33 35
|
sylibr |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. { .0. } ) |
37 |
3 4 5 6 7 8 11 14 36
|
islssd |
|- ( W e. LMod -> { .0. } e. S ) |