Description: The zero subspace is included in every subspace. ( sh0le analog.) (Contributed by NM, 27-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lss0cl.z | |- .0. = ( 0g ` W ) |
|
lss0cl.s | |- S = ( LSubSp ` W ) |
||
Assertion | lss0ss | |- ( ( W e. LMod /\ X e. S ) -> { .0. } C_ X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lss0cl.z | |- .0. = ( 0g ` W ) |
|
2 | lss0cl.s | |- S = ( LSubSp ` W ) |
|
3 | 1 2 | lss0cl | |- ( ( W e. LMod /\ X e. S ) -> .0. e. X ) |
4 | 3 | snssd | |- ( ( W e. LMod /\ X e. S ) -> { .0. } C_ X ) |