Metamath Proof Explorer


Theorem lssle0

Description: No subspace is smaller than the zero subspace. ( shle0 analog.) (Contributed by NM, 20-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lss0cl.z
|- .0. = ( 0g ` W )
lss0cl.s
|- S = ( LSubSp ` W )
Assertion lssle0
|- ( ( W e. LMod /\ X e. S ) -> ( X C_ { .0. } <-> X = { .0. } ) )

Proof

Step Hyp Ref Expression
1 lss0cl.z
 |-  .0. = ( 0g ` W )
2 lss0cl.s
 |-  S = ( LSubSp ` W )
3 1 2 lss0ss
 |-  ( ( W e. LMod /\ X e. S ) -> { .0. } C_ X )
4 3 biantrud
 |-  ( ( W e. LMod /\ X e. S ) -> ( X C_ { .0. } <-> ( X C_ { .0. } /\ { .0. } C_ X ) ) )
5 eqss
 |-  ( X = { .0. } <-> ( X C_ { .0. } /\ { .0. } C_ X ) )
6 4 5 bitr4di
 |-  ( ( W e. LMod /\ X e. S ) -> ( X C_ { .0. } <-> X = { .0. } ) )