Description: No subspace is smaller than the zero subspace. ( shle0 analog.) (Contributed by NM, 20-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lss0cl.z | |- .0. = ( 0g ` W ) |
|
lss0cl.s | |- S = ( LSubSp ` W ) |
||
Assertion | lssle0 | |- ( ( W e. LMod /\ X e. S ) -> ( X C_ { .0. } <-> X = { .0. } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lss0cl.z | |- .0. = ( 0g ` W ) |
|
2 | lss0cl.s | |- S = ( LSubSp ` W ) |
|
3 | 1 2 | lss0ss | |- ( ( W e. LMod /\ X e. S ) -> { .0. } C_ X ) |
4 | 3 | biantrud | |- ( ( W e. LMod /\ X e. S ) -> ( X C_ { .0. } <-> ( X C_ { .0. } /\ { .0. } C_ X ) ) ) |
5 | eqss | |- ( X = { .0. } <-> ( X C_ { .0. } /\ { .0. } C_ X ) ) |
|
6 | 4 5 | bitr4di | |- ( ( W e. LMod /\ X e. S ) -> ( X C_ { .0. } <-> X = { .0. } ) ) |