Step |
Hyp |
Ref |
Expression |
1 |
|
lss0cl.z |
|- .0. = ( 0g ` W ) |
2 |
|
lss0cl.s |
|- S = ( LSubSp ` W ) |
3 |
2
|
lssn0 |
|- ( X e. S -> X =/= (/) ) |
4 |
|
eqsn |
|- ( X =/= (/) -> ( X = { .0. } <-> A. y e. X y = .0. ) ) |
5 |
3 4
|
syl |
|- ( X e. S -> ( X = { .0. } <-> A. y e. X y = .0. ) ) |
6 |
|
nne |
|- ( -. y =/= .0. <-> y = .0. ) |
7 |
6
|
ralbii |
|- ( A. y e. X -. y =/= .0. <-> A. y e. X y = .0. ) |
8 |
|
ralnex |
|- ( A. y e. X -. y =/= .0. <-> -. E. y e. X y =/= .0. ) |
9 |
7 8
|
bitr3i |
|- ( A. y e. X y = .0. <-> -. E. y e. X y =/= .0. ) |
10 |
5 9
|
bitr2di |
|- ( X e. S -> ( -. E. y e. X y =/= .0. <-> X = { .0. } ) ) |
11 |
10
|
necon1abid |
|- ( X e. S -> ( X =/= { .0. } <-> E. y e. X y =/= .0. ) ) |