| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lss0cl.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 2 |
|
lss0cl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
2
|
lssn0 |
⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ≠ ∅ ) |
| 4 |
|
eqsn |
⊢ ( 𝑋 ≠ ∅ → ( 𝑋 = { 0 } ↔ ∀ 𝑦 ∈ 𝑋 𝑦 = 0 ) ) |
| 5 |
3 4
|
syl |
⊢ ( 𝑋 ∈ 𝑆 → ( 𝑋 = { 0 } ↔ ∀ 𝑦 ∈ 𝑋 𝑦 = 0 ) ) |
| 6 |
|
nne |
⊢ ( ¬ 𝑦 ≠ 0 ↔ 𝑦 = 0 ) |
| 7 |
6
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝑋 ¬ 𝑦 ≠ 0 ↔ ∀ 𝑦 ∈ 𝑋 𝑦 = 0 ) |
| 8 |
|
ralnex |
⊢ ( ∀ 𝑦 ∈ 𝑋 ¬ 𝑦 ≠ 0 ↔ ¬ ∃ 𝑦 ∈ 𝑋 𝑦 ≠ 0 ) |
| 9 |
7 8
|
bitr3i |
⊢ ( ∀ 𝑦 ∈ 𝑋 𝑦 = 0 ↔ ¬ ∃ 𝑦 ∈ 𝑋 𝑦 ≠ 0 ) |
| 10 |
5 9
|
bitr2di |
⊢ ( 𝑋 ∈ 𝑆 → ( ¬ ∃ 𝑦 ∈ 𝑋 𝑦 ≠ 0 ↔ 𝑋 = { 0 } ) ) |
| 11 |
10
|
necon1abid |
⊢ ( 𝑋 ∈ 𝑆 → ( 𝑋 ≠ { 0 } ↔ ∃ 𝑦 ∈ 𝑋 𝑦 ≠ 0 ) ) |