Metamath Proof Explorer


Theorem lssvneln0

Description: A vector X which doesn't belong to a subspace U is nonzero. (Contributed by NM, 14-May-2015) (Revised by AV, 19-Jul-2022)

Ref Expression
Hypotheses lssvneln0.o 0 = ( 0g𝑊 )
lssvneln0.s 𝑆 = ( LSubSp ‘ 𝑊 )
lssvneln0.w ( 𝜑𝑊 ∈ LMod )
lssvneln0.u ( 𝜑𝑈𝑆 )
lssvneln0.n ( 𝜑 → ¬ 𝑋𝑈 )
Assertion lssvneln0 ( 𝜑𝑋0 )

Proof

Step Hyp Ref Expression
1 lssvneln0.o 0 = ( 0g𝑊 )
2 lssvneln0.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 lssvneln0.w ( 𝜑𝑊 ∈ LMod )
4 lssvneln0.u ( 𝜑𝑈𝑆 )
5 lssvneln0.n ( 𝜑 → ¬ 𝑋𝑈 )
6 1 2 lss0cl ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → 0𝑈 )
7 3 4 6 syl2anc ( 𝜑0𝑈 )
8 eleq1a ( 0𝑈 → ( 𝑋 = 0𝑋𝑈 ) )
9 7 8 syl ( 𝜑 → ( 𝑋 = 0𝑋𝑈 ) )
10 9 necon3bd ( 𝜑 → ( ¬ 𝑋𝑈𝑋0 ) )
11 5 10 mpd ( 𝜑𝑋0 )