Metamath Proof Explorer


Theorem lssvneln0

Description: A vector X which doesn't belong to a subspace U is nonzero. (Contributed by NM, 14-May-2015) (Revised by AV, 19-Jul-2022)

Ref Expression
Hypotheses lssvneln0.o 0 ˙ = 0 W
lssvneln0.s S = LSubSp W
lssvneln0.w φ W LMod
lssvneln0.u φ U S
lssvneln0.n φ ¬ X U
Assertion lssvneln0 φ X 0 ˙

Proof

Step Hyp Ref Expression
1 lssvneln0.o 0 ˙ = 0 W
2 lssvneln0.s S = LSubSp W
3 lssvneln0.w φ W LMod
4 lssvneln0.u φ U S
5 lssvneln0.n φ ¬ X U
6 1 2 lss0cl W LMod U S 0 ˙ U
7 3 4 6 syl2anc φ 0 ˙ U
8 eleq1a 0 ˙ U X = 0 ˙ X U
9 7 8 syl φ X = 0 ˙ X U
10 9 necon3bd φ ¬ X U X 0 ˙
11 5 10 mpd φ X 0 ˙