Database BASIC ALGEBRAIC STRUCTURES Left modules Subspaces and spans in a left module lssneln0  
				
		 
		
			
		 
		Description:   A vector X  which doesn't belong to a subspace U  is nonzero.
       (Contributed by NM , 14-May-2015)   (Revised by AV , 17-Jul-2022)   (Proof
       shortened by AV , 19-Jul-2022) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						lssneln0.o   ⊢   0  ˙ =  0  W      
					 
					
						lssneln0.s   ⊢   S  =   LSubSp  ⁡  W        
					 
					
						lssneln0.w    ⊢   φ   →   W  ∈  LMod         
					 
					
						lssneln0.u    ⊢   φ   →   U  ∈  S         
					 
					
						lssneln0.x    ⊢   φ   →   X  ∈  V         
					 
					
						lssneln0.n    ⊢   φ   →   ¬   X  ∈  U           
					 
				
					Assertion 
					lssneln0    ⊢   φ   →   X  ∈   V  ∖   0  ˙           
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							lssneln0.o  ⊢   0  ˙ =  0  W      
						
							2 
								
							 
							lssneln0.s  ⊢   S  =   LSubSp  ⁡  W        
						
							3 
								
							 
							lssneln0.w   ⊢   φ   →   W  ∈  LMod         
						
							4 
								
							 
							lssneln0.u   ⊢   φ   →   U  ∈  S         
						
							5 
								
							 
							lssneln0.x   ⊢   φ   →   X  ∈  V         
						
							6 
								
							 
							lssneln0.n   ⊢   φ   →   ¬   X  ∈  U           
						
							7 
								1  2  3  4  6 
							 
							lssvneln0   ⊢   φ   →   X  ≠  0  ˙        
						
							8 
								
							 
							eldifsn   ⊢   X  ∈   V  ∖   0  ˙      ↔    X  ∈  V    ∧   X  ≠  0  ˙         
						
							9 
								5  7  8 
							 
							sylanbrc   ⊢   φ   →   X  ∈   V  ∖   0  ˙