Description: Conclude subspace ordering from nonzero vector membership. ( ssrdv analog.) (Contributed by NM, 17-Aug-2014) (Revised by AV, 13-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lssssr.o | |
|
lssssr.s | |
||
lssssr.w | |
||
lssssr.t | |
||
lssssr.u | |
||
lssssr.1 | |
||
Assertion | lssssr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssssr.o | |
|
2 | lssssr.s | |
|
3 | lssssr.w | |
|
4 | lssssr.t | |
|
5 | lssssr.u | |
|
6 | lssssr.1 | |
|
7 | simpr | |
|
8 | 1 2 | lss0cl | |
9 | 3 5 8 | syl2anc | |
10 | 9 | adantr | |
11 | 7 10 | eqeltrd | |
12 | 11 | a1d | |
13 | 4 | sseld | |
14 | 13 | ancrd | |
15 | 14 | adantr | |
16 | eldifsn | |
|
17 | 16 6 | sylan2br | |
18 | 17 | exp32 | |
19 | 18 | com23 | |
20 | 19 | imp4b | |
21 | 15 20 | syld | |
22 | 12 21 | pm2.61dane | |
23 | 22 | ssrdv | |