Metamath Proof Explorer


Theorem lssssr

Description: Conclude subspace ordering from nonzero vector membership. ( ssrdv analog.) (Contributed by NM, 17-Aug-2014) (Revised by AV, 13-Jul-2022)

Ref Expression
Hypotheses lssssr.o 0˙=0W
lssssr.s S=LSubSpW
lssssr.w φWLMod
lssssr.t φTV
lssssr.u φUS
lssssr.1 φxV0˙xTxU
Assertion lssssr φTU

Proof

Step Hyp Ref Expression
1 lssssr.o 0˙=0W
2 lssssr.s S=LSubSpW
3 lssssr.w φWLMod
4 lssssr.t φTV
5 lssssr.u φUS
6 lssssr.1 φxV0˙xTxU
7 simpr φx=0˙x=0˙
8 1 2 lss0cl WLModUS0˙U
9 3 5 8 syl2anc φ0˙U
10 9 adantr φx=0˙0˙U
11 7 10 eqeltrd φx=0˙xU
12 11 a1d φx=0˙xTxU
13 4 sseld φxTxV
14 13 ancrd φxTxVxT
15 14 adantr φx0˙xTxVxT
16 eldifsn xV0˙xVx0˙
17 16 6 sylan2br φxVx0˙xTxU
18 17 exp32 φxVx0˙xTxU
19 18 com23 φx0˙xVxTxU
20 19 imp4b φx0˙xVxTxU
21 15 20 syld φx0˙xTxU
22 12 21 pm2.61dane φxTxU
23 22 ssrdv φTU