Description: A vector X which doesn't belong to a subspace U is nonzero. (Contributed by NM, 14-May-2015) (Revised by AV, 19-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lssvneln0.o | |- .0. = ( 0g ` W ) |
|
lssvneln0.s | |- S = ( LSubSp ` W ) |
||
lssvneln0.w | |- ( ph -> W e. LMod ) |
||
lssvneln0.u | |- ( ph -> U e. S ) |
||
lssvneln0.n | |- ( ph -> -. X e. U ) |
||
Assertion | lssvneln0 | |- ( ph -> X =/= .0. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssvneln0.o | |- .0. = ( 0g ` W ) |
|
2 | lssvneln0.s | |- S = ( LSubSp ` W ) |
|
3 | lssvneln0.w | |- ( ph -> W e. LMod ) |
|
4 | lssvneln0.u | |- ( ph -> U e. S ) |
|
5 | lssvneln0.n | |- ( ph -> -. X e. U ) |
|
6 | 1 2 | lss0cl | |- ( ( W e. LMod /\ U e. S ) -> .0. e. U ) |
7 | 3 4 6 | syl2anc | |- ( ph -> .0. e. U ) |
8 | eleq1a | |- ( .0. e. U -> ( X = .0. -> X e. U ) ) |
|
9 | 7 8 | syl | |- ( ph -> ( X = .0. -> X e. U ) ) |
10 | 9 | necon3bd | |- ( ph -> ( -. X e. U -> X =/= .0. ) ) |
11 | 5 10 | mpd | |- ( ph -> X =/= .0. ) |