| Step |
Hyp |
Ref |
Expression |
| 1 |
|
shne0.1 |
⊢ 𝐴 ∈ Sℋ |
| 2 |
|
df-ne |
⊢ ( 𝐴 ≠ 0ℋ ↔ ¬ 𝐴 = 0ℋ ) |
| 3 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 0ℋ ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 0ℋ ) ) |
| 4 |
|
nss |
⊢ ( ¬ 𝐴 ⊆ 0ℋ ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 0ℋ ) ) |
| 5 |
|
shle0 |
⊢ ( 𝐴 ∈ Sℋ → ( 𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ ) ) |
| 6 |
1 5
|
ax-mp |
⊢ ( 𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ ) |
| 7 |
6
|
notbii |
⊢ ( ¬ 𝐴 ⊆ 0ℋ ↔ ¬ 𝐴 = 0ℋ ) |
| 8 |
3 4 7
|
3bitr2ri |
⊢ ( ¬ 𝐴 = 0ℋ ↔ ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 0ℋ ) |
| 9 |
|
elch0 |
⊢ ( 𝑥 ∈ 0ℋ ↔ 𝑥 = 0ℎ ) |
| 10 |
9
|
necon3bbii |
⊢ ( ¬ 𝑥 ∈ 0ℋ ↔ 𝑥 ≠ 0ℎ ) |
| 11 |
10
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 0ℋ ↔ ∃ 𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ ) |
| 12 |
2 8 11
|
3bitri |
⊢ ( 𝐴 ≠ 0ℋ ↔ ∃ 𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ ) |