Metamath Proof Explorer


Theorem shne0i

Description: A nonzero subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis shne0.1 AS
Assertion shne0i A0xAx0

Proof

Step Hyp Ref Expression
1 shne0.1 AS
2 df-ne A0¬A=0
3 df-rex xA¬x0xxA¬x0
4 nss ¬A0xxA¬x0
5 shle0 ASA0A=0
6 1 5 ax-mp A0A=0
7 6 notbii ¬A0¬A=0
8 3 4 7 3bitr2ri ¬A=0xA¬x0
9 elch0 x0x=0
10 9 necon3bbii ¬x0x0
11 10 rexbii xA¬x0xAx0
12 2 8 11 3bitri A0xAx0