Description: Hilbert subspace sum with the zero subspace. (Contributed by NM, 14-Jan-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shne0.1 | ⊢ 𝐴 ∈ Sℋ | |
| Assertion | shs0i | ⊢ ( 𝐴 +ℋ 0ℋ ) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shne0.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | h0elsh | ⊢ 0ℋ ∈ Sℋ | |
| 3 | 1 2 | shsval3i | ⊢ ( 𝐴 +ℋ 0ℋ ) = ( span ‘ ( 𝐴 ∪ 0ℋ ) ) |
| 4 | sh0le | ⊢ ( 𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴 ) | |
| 5 | 1 4 | ax-mp | ⊢ 0ℋ ⊆ 𝐴 |
| 6 | ssequn2 | ⊢ ( 0ℋ ⊆ 𝐴 ↔ ( 𝐴 ∪ 0ℋ ) = 𝐴 ) | |
| 7 | 5 6 | mpbi | ⊢ ( 𝐴 ∪ 0ℋ ) = 𝐴 |
| 8 | 7 | fveq2i | ⊢ ( span ‘ ( 𝐴 ∪ 0ℋ ) ) = ( span ‘ 𝐴 ) |
| 9 | spanid | ⊢ ( 𝐴 ∈ Sℋ → ( span ‘ 𝐴 ) = 𝐴 ) | |
| 10 | 1 9 | ax-mp | ⊢ ( span ‘ 𝐴 ) = 𝐴 |
| 11 | 3 8 10 | 3eqtri | ⊢ ( 𝐴 +ℋ 0ℋ ) = 𝐴 |