Description: Hilbert subspace sum with the zero subspace. (Contributed by NM, 14-Jan-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shne0.1 | |- A e. SH |
|
| Assertion | shs0i | |- ( A +H 0H ) = A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shne0.1 | |- A e. SH |
|
| 2 | h0elsh | |- 0H e. SH |
|
| 3 | 1 2 | shsval3i | |- ( A +H 0H ) = ( span ` ( A u. 0H ) ) |
| 4 | sh0le | |- ( A e. SH -> 0H C_ A ) |
|
| 5 | 1 4 | ax-mp | |- 0H C_ A |
| 6 | ssequn2 | |- ( 0H C_ A <-> ( A u. 0H ) = A ) |
|
| 7 | 5 6 | mpbi | |- ( A u. 0H ) = A |
| 8 | 7 | fveq2i | |- ( span ` ( A u. 0H ) ) = ( span ` A ) |
| 9 | spanid | |- ( A e. SH -> ( span ` A ) = A ) |
|
| 10 | 1 9 | ax-mp | |- ( span ` A ) = A |
| 11 | 3 8 10 | 3eqtri | |- ( A +H 0H ) = A |