Metamath Proof Explorer


Theorem shs0i

Description: Hilbert subspace sum with the zero subspace. (Contributed by NM, 14-Jan-2005) (New usage is discouraged.)

Ref Expression
Hypothesis shne0.1
|- A e. SH
Assertion shs0i
|- ( A +H 0H ) = A

Proof

Step Hyp Ref Expression
1 shne0.1
 |-  A e. SH
2 h0elsh
 |-  0H e. SH
3 1 2 shsval3i
 |-  ( A +H 0H ) = ( span ` ( A u. 0H ) )
4 sh0le
 |-  ( A e. SH -> 0H C_ A )
5 1 4 ax-mp
 |-  0H C_ A
6 ssequn2
 |-  ( 0H C_ A <-> ( A u. 0H ) = A )
7 5 6 mpbi
 |-  ( A u. 0H ) = A
8 7 fveq2i
 |-  ( span ` ( A u. 0H ) ) = ( span ` A )
9 spanid
 |-  ( A e. SH -> ( span ` A ) = A )
10 1 9 ax-mp
 |-  ( span ` A ) = A
11 3 8 10 3eqtri
 |-  ( A +H 0H ) = A