Description: An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shlesb1.1 | |- A e. SH |
|
| shlesb1.2 | |- B e. SH |
||
| Assertion | shsval3i | |- ( A +H B ) = ( span ` ( A u. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shlesb1.1 | |- A e. SH |
|
| 2 | shlesb1.2 | |- B e. SH |
|
| 3 | 1 2 | shsval2i | |- ( A +H B ) = |^| { x e. SH | ( A u. B ) C_ x } |
| 4 | 1 | shssii | |- A C_ ~H |
| 5 | 2 | shssii | |- B C_ ~H |
| 6 | 4 5 | unssi | |- ( A u. B ) C_ ~H |
| 7 | spanval | |- ( ( A u. B ) C_ ~H -> ( span ` ( A u. B ) ) = |^| { x e. SH | ( A u. B ) C_ x } ) |
|
| 8 | 6 7 | ax-mp | |- ( span ` ( A u. B ) ) = |^| { x e. SH | ( A u. B ) C_ x } |
| 9 | 3 8 | eqtr4i | |- ( A +H B ) = ( span ` ( A u. B ) ) |