Metamath Proof Explorer


Theorem shsval3i

Description: An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses shlesb1.1
|- A e. SH
shlesb1.2
|- B e. SH
Assertion shsval3i
|- ( A +H B ) = ( span ` ( A u. B ) )

Proof

Step Hyp Ref Expression
1 shlesb1.1
 |-  A e. SH
2 shlesb1.2
 |-  B e. SH
3 1 2 shsval2i
 |-  ( A +H B ) = |^| { x e. SH | ( A u. B ) C_ x }
4 1 shssii
 |-  A C_ ~H
5 2 shssii
 |-  B C_ ~H
6 4 5 unssi
 |-  ( A u. B ) C_ ~H
7 spanval
 |-  ( ( A u. B ) C_ ~H -> ( span ` ( A u. B ) ) = |^| { x e. SH | ( A u. B ) C_ x } )
8 6 7 ax-mp
 |-  ( span ` ( A u. B ) ) = |^| { x e. SH | ( A u. B ) C_ x }
9 3 8 eqtr4i
 |-  ( A +H B ) = ( span ` ( A u. B ) )