Description: An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | shlesb1.1 | |- A e. SH |
|
shlesb1.2 | |- B e. SH |
||
Assertion | shsval3i | |- ( A +H B ) = ( span ` ( A u. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shlesb1.1 | |- A e. SH |
|
2 | shlesb1.2 | |- B e. SH |
|
3 | 1 2 | shsval2i | |- ( A +H B ) = |^| { x e. SH | ( A u. B ) C_ x } |
4 | 1 | shssii | |- A C_ ~H |
5 | 2 | shssii | |- B C_ ~H |
6 | 4 5 | unssi | |- ( A u. B ) C_ ~H |
7 | spanval | |- ( ( A u. B ) C_ ~H -> ( span ` ( A u. B ) ) = |^| { x e. SH | ( A u. B ) C_ x } ) |
|
8 | 6 7 | ax-mp | |- ( span ` ( A u. B ) ) = |^| { x e. SH | ( A u. B ) C_ x } |
9 | 3 8 | eqtr4i | |- ( A +H B ) = ( span ` ( A u. B ) ) |