| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-span |
|- span = ( y e. ~P ~H |-> |^| { x e. SH | y C_ x } ) |
| 2 |
|
sseq1 |
|- ( y = A -> ( y C_ x <-> A C_ x ) ) |
| 3 |
2
|
rabbidv |
|- ( y = A -> { x e. SH | y C_ x } = { x e. SH | A C_ x } ) |
| 4 |
3
|
inteqd |
|- ( y = A -> |^| { x e. SH | y C_ x } = |^| { x e. SH | A C_ x } ) |
| 5 |
|
ax-hilex |
|- ~H e. _V |
| 6 |
5
|
elpw2 |
|- ( A e. ~P ~H <-> A C_ ~H ) |
| 7 |
6
|
biimpri |
|- ( A C_ ~H -> A e. ~P ~H ) |
| 8 |
|
helsh |
|- ~H e. SH |
| 9 |
|
sseq2 |
|- ( x = ~H -> ( A C_ x <-> A C_ ~H ) ) |
| 10 |
9
|
rspcev |
|- ( ( ~H e. SH /\ A C_ ~H ) -> E. x e. SH A C_ x ) |
| 11 |
8 10
|
mpan |
|- ( A C_ ~H -> E. x e. SH A C_ x ) |
| 12 |
|
intexrab |
|- ( E. x e. SH A C_ x <-> |^| { x e. SH | A C_ x } e. _V ) |
| 13 |
11 12
|
sylib |
|- ( A C_ ~H -> |^| { x e. SH | A C_ x } e. _V ) |
| 14 |
1 4 7 13
|
fvmptd3 |
|- ( A C_ ~H -> ( span ` A ) = |^| { x e. SH | A C_ x } ) |