Step |
Hyp |
Ref |
Expression |
1 |
|
df-span |
|- span = ( y e. ~P ~H |-> |^| { x e. SH | y C_ x } ) |
2 |
|
sseq1 |
|- ( y = A -> ( y C_ x <-> A C_ x ) ) |
3 |
2
|
rabbidv |
|- ( y = A -> { x e. SH | y C_ x } = { x e. SH | A C_ x } ) |
4 |
3
|
inteqd |
|- ( y = A -> |^| { x e. SH | y C_ x } = |^| { x e. SH | A C_ x } ) |
5 |
|
ax-hilex |
|- ~H e. _V |
6 |
5
|
elpw2 |
|- ( A e. ~P ~H <-> A C_ ~H ) |
7 |
6
|
biimpri |
|- ( A C_ ~H -> A e. ~P ~H ) |
8 |
|
helsh |
|- ~H e. SH |
9 |
|
sseq2 |
|- ( x = ~H -> ( A C_ x <-> A C_ ~H ) ) |
10 |
9
|
rspcev |
|- ( ( ~H e. SH /\ A C_ ~H ) -> E. x e. SH A C_ x ) |
11 |
8 10
|
mpan |
|- ( A C_ ~H -> E. x e. SH A C_ x ) |
12 |
|
intexrab |
|- ( E. x e. SH A C_ x <-> |^| { x e. SH | A C_ x } e. _V ) |
13 |
11 12
|
sylib |
|- ( A C_ ~H -> |^| { x e. SH | A C_ x } e. _V ) |
14 |
1 4 7 13
|
fvmptd3 |
|- ( A C_ ~H -> ( span ` A ) = |^| { x e. SH | A C_ x } ) |