| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-span |
⊢ span = ( 𝑦 ∈ 𝒫 ℋ ↦ ∩ { 𝑥 ∈ Sℋ ∣ 𝑦 ⊆ 𝑥 } ) |
| 2 |
|
sseq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥 ) ) |
| 3 |
2
|
rabbidv |
⊢ ( 𝑦 = 𝐴 → { 𝑥 ∈ Sℋ ∣ 𝑦 ⊆ 𝑥 } = { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ) |
| 4 |
3
|
inteqd |
⊢ ( 𝑦 = 𝐴 → ∩ { 𝑥 ∈ Sℋ ∣ 𝑦 ⊆ 𝑥 } = ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ) |
| 5 |
|
ax-hilex |
⊢ ℋ ∈ V |
| 6 |
5
|
elpw2 |
⊢ ( 𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ ) |
| 7 |
6
|
biimpri |
⊢ ( 𝐴 ⊆ ℋ → 𝐴 ∈ 𝒫 ℋ ) |
| 8 |
|
helsh |
⊢ ℋ ∈ Sℋ |
| 9 |
|
sseq2 |
⊢ ( 𝑥 = ℋ → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ℋ ) ) |
| 10 |
9
|
rspcev |
⊢ ( ( ℋ ∈ Sℋ ∧ 𝐴 ⊆ ℋ ) → ∃ 𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥 ) |
| 11 |
8 10
|
mpan |
⊢ ( 𝐴 ⊆ ℋ → ∃ 𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥 ) |
| 12 |
|
intexrab |
⊢ ( ∃ 𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥 ↔ ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ∈ V ) |
| 13 |
11 12
|
sylib |
⊢ ( 𝐴 ⊆ ℋ → ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ∈ V ) |
| 14 |
1 4 7 13
|
fvmptd3 |
⊢ ( 𝐴 ⊆ ℋ → ( span ‘ 𝐴 ) = ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ) |