Description: No subspace is smaller than the zero subspace. ( shle0 analog.) (Contributed by NM, 20-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lss0cl.z | |
|
lss0cl.s | |
||
Assertion | lssle0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lss0cl.z | |
|
2 | lss0cl.s | |
|
3 | 1 2 | lss0ss | |
4 | 3 | biantrud | |
5 | eqss | |
|
6 | 4 5 | bitr4di | |