Metamath Proof Explorer


Theorem lssle0

Description: No subspace is smaller than the zero subspace. ( shle0 analog.) (Contributed by NM, 20-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lss0cl.z 0˙=0W
lss0cl.s S=LSubSpW
Assertion lssle0 WLModXSX0˙X=0˙

Proof

Step Hyp Ref Expression
1 lss0cl.z 0˙=0W
2 lss0cl.s S=LSubSpW
3 1 2 lss0ss WLModXS0˙X
4 3 biantrud WLModXSX0˙X0˙0˙X
5 eqss X=0˙X0˙0˙X
6 4 5 bitr4di WLModXSX0˙X=0˙