Metamath Proof Explorer


Theorem lss0ss

Description: The zero subspace is included in every subspace. ( sh0le analog.) (Contributed by NM, 27-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lss0cl.z 0˙=0W
lss0cl.s S=LSubSpW
Assertion lss0ss WLModXS0˙X

Proof

Step Hyp Ref Expression
1 lss0cl.z 0˙=0W
2 lss0cl.s S=LSubSpW
3 1 2 lss0cl WLModXS0˙X
4 3 snssd WLModXS0˙X