| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lss0cl.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 2 |
|
lss0cl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
eqidd |
⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ) |
| 4 |
|
eqidd |
⊢ ( 𝑊 ∈ LMod → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 5 |
|
eqidd |
⊢ ( 𝑊 ∈ LMod → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) |
| 6 |
|
eqidd |
⊢ ( 𝑊 ∈ LMod → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) ) |
| 7 |
|
eqidd |
⊢ ( 𝑊 ∈ LMod → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) ) |
| 8 |
2
|
a1i |
⊢ ( 𝑊 ∈ LMod → 𝑆 = ( LSubSp ‘ 𝑊 ) ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 10 |
9 1
|
lmod0vcl |
⊢ ( 𝑊 ∈ LMod → 0 ∈ ( Base ‘ 𝑊 ) ) |
| 11 |
10
|
snssd |
⊢ ( 𝑊 ∈ LMod → { 0 } ⊆ ( Base ‘ 𝑊 ) ) |
| 12 |
1
|
fvexi |
⊢ 0 ∈ V |
| 13 |
12
|
snnz |
⊢ { 0 } ≠ ∅ |
| 14 |
13
|
a1i |
⊢ ( 𝑊 ∈ LMod → { 0 } ≠ ∅ ) |
| 15 |
|
simpr2 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → 𝑎 ∈ { 0 } ) |
| 16 |
|
elsni |
⊢ ( 𝑎 ∈ { 0 } → 𝑎 = 0 ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → 𝑎 = 0 ) |
| 18 |
17
|
oveq2d |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 0 ) ) |
| 19 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 20 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 21 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 22 |
19 20 21 1
|
lmodvs0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 0 ) = 0 ) |
| 23 |
22
|
3ad2antr1 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 0 ) = 0 ) |
| 24 |
18 23
|
eqtrd |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) = 0 ) |
| 25 |
|
simpr3 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → 𝑏 ∈ { 0 } ) |
| 26 |
|
elsni |
⊢ ( 𝑏 ∈ { 0 } → 𝑏 = 0 ) |
| 27 |
25 26
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → 𝑏 = 0 ) |
| 28 |
24 27
|
oveq12d |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) = ( 0 ( +g ‘ 𝑊 ) 0 ) ) |
| 29 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 30 |
9 29 1
|
lmod0vlid |
⊢ ( ( 𝑊 ∈ LMod ∧ 0 ∈ ( Base ‘ 𝑊 ) ) → ( 0 ( +g ‘ 𝑊 ) 0 ) = 0 ) |
| 31 |
10 30
|
mpdan |
⊢ ( 𝑊 ∈ LMod → ( 0 ( +g ‘ 𝑊 ) 0 ) = 0 ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( 0 ( +g ‘ 𝑊 ) 0 ) = 0 ) |
| 33 |
28 32
|
eqtrd |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) = 0 ) |
| 34 |
|
ovex |
⊢ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ V |
| 35 |
34
|
elsn |
⊢ ( ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ { 0 } ↔ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) = 0 ) |
| 36 |
33 35
|
sylibr |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ { 0 } ) |
| 37 |
3 4 5 6 7 8 11 14 36
|
islssd |
⊢ ( 𝑊 ∈ LMod → { 0 } ∈ 𝑆 ) |