Step |
Hyp |
Ref |
Expression |
1 |
|
lss0cl.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
2 |
|
lss0cl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
eqidd |
⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ) |
4 |
|
eqidd |
⊢ ( 𝑊 ∈ LMod → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
5 |
|
eqidd |
⊢ ( 𝑊 ∈ LMod → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) |
6 |
|
eqidd |
⊢ ( 𝑊 ∈ LMod → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) ) |
7 |
|
eqidd |
⊢ ( 𝑊 ∈ LMod → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) ) |
8 |
2
|
a1i |
⊢ ( 𝑊 ∈ LMod → 𝑆 = ( LSubSp ‘ 𝑊 ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
10 |
9 1
|
lmod0vcl |
⊢ ( 𝑊 ∈ LMod → 0 ∈ ( Base ‘ 𝑊 ) ) |
11 |
10
|
snssd |
⊢ ( 𝑊 ∈ LMod → { 0 } ⊆ ( Base ‘ 𝑊 ) ) |
12 |
1
|
fvexi |
⊢ 0 ∈ V |
13 |
12
|
snnz |
⊢ { 0 } ≠ ∅ |
14 |
13
|
a1i |
⊢ ( 𝑊 ∈ LMod → { 0 } ≠ ∅ ) |
15 |
|
simpr2 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → 𝑎 ∈ { 0 } ) |
16 |
|
elsni |
⊢ ( 𝑎 ∈ { 0 } → 𝑎 = 0 ) |
17 |
15 16
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → 𝑎 = 0 ) |
18 |
17
|
oveq2d |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 0 ) ) |
19 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
20 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
21 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
22 |
19 20 21 1
|
lmodvs0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 0 ) = 0 ) |
23 |
22
|
3ad2antr1 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 0 ) = 0 ) |
24 |
18 23
|
eqtrd |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) = 0 ) |
25 |
|
simpr3 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → 𝑏 ∈ { 0 } ) |
26 |
|
elsni |
⊢ ( 𝑏 ∈ { 0 } → 𝑏 = 0 ) |
27 |
25 26
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → 𝑏 = 0 ) |
28 |
24 27
|
oveq12d |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) = ( 0 ( +g ‘ 𝑊 ) 0 ) ) |
29 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
30 |
9 29 1
|
lmod0vlid |
⊢ ( ( 𝑊 ∈ LMod ∧ 0 ∈ ( Base ‘ 𝑊 ) ) → ( 0 ( +g ‘ 𝑊 ) 0 ) = 0 ) |
31 |
10 30
|
mpdan |
⊢ ( 𝑊 ∈ LMod → ( 0 ( +g ‘ 𝑊 ) 0 ) = 0 ) |
32 |
31
|
adantr |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( 0 ( +g ‘ 𝑊 ) 0 ) = 0 ) |
33 |
28 32
|
eqtrd |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) = 0 ) |
34 |
|
ovex |
⊢ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ V |
35 |
34
|
elsn |
⊢ ( ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ { 0 } ↔ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) = 0 ) |
36 |
33 35
|
sylibr |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ { 0 } ) |
37 |
3 4 5 6 7 8 11 14 36
|
islssd |
⊢ ( 𝑊 ∈ LMod → { 0 } ∈ 𝑆 ) |