Metamath Proof Explorer


Theorem lsssn0

Description: The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lss0cl.z 0 ˙ = 0 W
lss0cl.s S = LSubSp W
Assertion lsssn0 W LMod 0 ˙ S

Proof

Step Hyp Ref Expression
1 lss0cl.z 0 ˙ = 0 W
2 lss0cl.s S = LSubSp W
3 eqidd W LMod Scalar W = Scalar W
4 eqidd W LMod Base Scalar W = Base Scalar W
5 eqidd W LMod Base W = Base W
6 eqidd W LMod + W = + W
7 eqidd W LMod W = W
8 2 a1i W LMod S = LSubSp W
9 eqid Base W = Base W
10 9 1 lmod0vcl W LMod 0 ˙ Base W
11 10 snssd W LMod 0 ˙ Base W
12 1 fvexi 0 ˙ V
13 12 snnz 0 ˙
14 13 a1i W LMod 0 ˙
15 simpr2 W LMod x Base Scalar W a 0 ˙ b 0 ˙ a 0 ˙
16 elsni a 0 ˙ a = 0 ˙
17 15 16 syl W LMod x Base Scalar W a 0 ˙ b 0 ˙ a = 0 ˙
18 17 oveq2d W LMod x Base Scalar W a 0 ˙ b 0 ˙ x W a = x W 0 ˙
19 eqid Scalar W = Scalar W
20 eqid W = W
21 eqid Base Scalar W = Base Scalar W
22 19 20 21 1 lmodvs0 W LMod x Base Scalar W x W 0 ˙ = 0 ˙
23 22 3ad2antr1 W LMod x Base Scalar W a 0 ˙ b 0 ˙ x W 0 ˙ = 0 ˙
24 18 23 eqtrd W LMod x Base Scalar W a 0 ˙ b 0 ˙ x W a = 0 ˙
25 simpr3 W LMod x Base Scalar W a 0 ˙ b 0 ˙ b 0 ˙
26 elsni b 0 ˙ b = 0 ˙
27 25 26 syl W LMod x Base Scalar W a 0 ˙ b 0 ˙ b = 0 ˙
28 24 27 oveq12d W LMod x Base Scalar W a 0 ˙ b 0 ˙ x W a + W b = 0 ˙ + W 0 ˙
29 eqid + W = + W
30 9 29 1 lmod0vlid W LMod 0 ˙ Base W 0 ˙ + W 0 ˙ = 0 ˙
31 10 30 mpdan W LMod 0 ˙ + W 0 ˙ = 0 ˙
32 31 adantr W LMod x Base Scalar W a 0 ˙ b 0 ˙ 0 ˙ + W 0 ˙ = 0 ˙
33 28 32 eqtrd W LMod x Base Scalar W a 0 ˙ b 0 ˙ x W a + W b = 0 ˙
34 ovex x W a + W b V
35 34 elsn x W a + W b 0 ˙ x W a + W b = 0 ˙
36 33 35 sylibr W LMod x Base Scalar W a 0 ˙ b 0 ˙ x W a + W b 0 ˙
37 3 4 5 6 7 8 11 14 36 islssd W LMod 0 ˙ S