Metamath Proof Explorer


Theorem islssd

Description: Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypotheses islssd.f φF=ScalarW
islssd.b φB=BaseF
islssd.v φV=BaseW
islssd.p φ+˙=+W
islssd.t φ·˙=W
islssd.s φS=LSubSpW
islssd.u φUV
islssd.z φU
islssd.c φxBaUbUx·˙a+˙bU
Assertion islssd φUS

Proof

Step Hyp Ref Expression
1 islssd.f φF=ScalarW
2 islssd.b φB=BaseF
3 islssd.v φV=BaseW
4 islssd.p φ+˙=+W
5 islssd.t φ·˙=W
6 islssd.s φS=LSubSpW
7 islssd.u φUV
8 islssd.z φU
9 islssd.c φxBaUbUx·˙a+˙bU
10 7 3 sseqtrd φUBaseW
11 9 3exp2 φxBaUbUx·˙a+˙bU
12 11 imp43 φxBaUbUx·˙a+˙bU
13 12 ralrimivva φxBaUbUx·˙a+˙bU
14 13 ex φxBaUbUx·˙a+˙bU
15 1 fveq2d φBaseF=BaseScalarW
16 2 15 eqtrd φB=BaseScalarW
17 16 eleq2d φxBxBaseScalarW
18 4 oveqd φx·˙a+˙b=x·˙a+Wb
19 5 oveqd φx·˙a=xWa
20 19 oveq1d φx·˙a+Wb=xWa+Wb
21 18 20 eqtrd φx·˙a+˙b=xWa+Wb
22 21 eleq1d φx·˙a+˙bUxWa+WbU
23 22 2ralbidv φaUbUx·˙a+˙bUaUbUxWa+WbU
24 14 17 23 3imtr3d φxBaseScalarWaUbUxWa+WbU
25 24 ralrimiv φxBaseScalarWaUbUxWa+WbU
26 eqid ScalarW=ScalarW
27 eqid BaseScalarW=BaseScalarW
28 eqid BaseW=BaseW
29 eqid +W=+W
30 eqid W=W
31 eqid LSubSpW=LSubSpW
32 26 27 28 29 30 31 islss ULSubSpWUBaseWUxBaseScalarWaUbUxWa+WbU
33 10 8 25 32 syl3anbrc φULSubSpW
34 33 6 eleqtrrd φUS