Metamath Proof Explorer


Theorem islssd

Description: Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypotheses islssd.f φ F = Scalar W
islssd.b φ B = Base F
islssd.v φ V = Base W
islssd.p φ + ˙ = + W
islssd.t φ · ˙ = W
islssd.s φ S = LSubSp W
islssd.u φ U V
islssd.z φ U
islssd.c φ x B a U b U x · ˙ a + ˙ b U
Assertion islssd φ U S

Proof

Step Hyp Ref Expression
1 islssd.f φ F = Scalar W
2 islssd.b φ B = Base F
3 islssd.v φ V = Base W
4 islssd.p φ + ˙ = + W
5 islssd.t φ · ˙ = W
6 islssd.s φ S = LSubSp W
7 islssd.u φ U V
8 islssd.z φ U
9 islssd.c φ x B a U b U x · ˙ a + ˙ b U
10 7 3 sseqtrd φ U Base W
11 9 3exp2 φ x B a U b U x · ˙ a + ˙ b U
12 11 imp43 φ x B a U b U x · ˙ a + ˙ b U
13 12 ralrimivva φ x B a U b U x · ˙ a + ˙ b U
14 13 ex φ x B a U b U x · ˙ a + ˙ b U
15 1 fveq2d φ Base F = Base Scalar W
16 2 15 eqtrd φ B = Base Scalar W
17 16 eleq2d φ x B x Base Scalar W
18 4 oveqd φ x · ˙ a + ˙ b = x · ˙ a + W b
19 5 oveqd φ x · ˙ a = x W a
20 19 oveq1d φ x · ˙ a + W b = x W a + W b
21 18 20 eqtrd φ x · ˙ a + ˙ b = x W a + W b
22 21 eleq1d φ x · ˙ a + ˙ b U x W a + W b U
23 22 2ralbidv φ a U b U x · ˙ a + ˙ b U a U b U x W a + W b U
24 14 17 23 3imtr3d φ x Base Scalar W a U b U x W a + W b U
25 24 ralrimiv φ x Base Scalar W a U b U x W a + W b U
26 eqid Scalar W = Scalar W
27 eqid Base Scalar W = Base Scalar W
28 eqid Base W = Base W
29 eqid + W = + W
30 eqid W = W
31 eqid LSubSp W = LSubSp W
32 26 27 28 29 30 31 islss U LSubSp W U Base W U x Base Scalar W a U b U x W a + W b U
33 10 8 25 32 syl3anbrc φ U LSubSp W
34 33 6 eleqtrrd φ U S