Metamath Proof Explorer


Theorem islss

Description: The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypotheses lssset.f F=ScalarW
lssset.b B=BaseF
lssset.v V=BaseW
lssset.p +˙=+W
lssset.t ·˙=W
lssset.s S=LSubSpW
Assertion islss USUVUxBaUbUx·˙a+˙bU

Proof

Step Hyp Ref Expression
1 lssset.f F=ScalarW
2 lssset.b B=BaseF
3 lssset.v V=BaseW
4 lssset.p +˙=+W
5 lssset.t ·˙=W
6 lssset.s S=LSubSpW
7 elfvex ULSubSpWWV
8 7 6 eleq2s USWV
9 fvprc ¬WVBaseW=
10 3 9 eqtrid ¬WVV=
11 10 sseq2d ¬WVUVU
12 11 biimpcd UV¬WVU
13 ss0 UU=
14 12 13 syl6 UV¬WVU=
15 14 necon1ad UVUWV
16 15 imp UVUWV
17 16 3adant3 UVUxBaUbUx·˙a+˙bUWV
18 1 2 3 4 5 6 lssset WVS=s𝒫V|xBasbsx·˙a+˙bs
19 18 eleq2d WVUSUs𝒫V|xBasbsx·˙a+˙bs
20 eldifsn U𝒫VU𝒫VU
21 3 fvexi VV
22 21 elpw2 U𝒫VUV
23 22 anbi1i U𝒫VUUVU
24 20 23 bitri U𝒫VUVU
25 24 anbi1i U𝒫VxBaUbUx·˙a+˙bUUVUxBaUbUx·˙a+˙bU
26 eleq2 s=Ux·˙a+˙bsx·˙a+˙bU
27 26 raleqbi1dv s=Ubsx·˙a+˙bsbUx·˙a+˙bU
28 27 raleqbi1dv s=Uasbsx·˙a+˙bsaUbUx·˙a+˙bU
29 28 ralbidv s=UxBasbsx·˙a+˙bsxBaUbUx·˙a+˙bU
30 29 elrab Us𝒫V|xBasbsx·˙a+˙bsU𝒫VxBaUbUx·˙a+˙bU
31 df-3an UVUxBaUbUx·˙a+˙bUUVUxBaUbUx·˙a+˙bU
32 25 30 31 3bitr4i Us𝒫V|xBasbsx·˙a+˙bsUVUxBaUbUx·˙a+˙bU
33 19 32 bitrdi WVUSUVUxBaUbUx·˙a+˙bU
34 8 17 33 pm5.21nii USUVUxBaUbUx·˙a+˙bU