Step |
Hyp |
Ref |
Expression |
1 |
|
lssset.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
lssset.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
3 |
|
lssset.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
4 |
|
lssset.p |
⊢ + = ( +g ‘ 𝑊 ) |
5 |
|
lssset.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
lssset.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
7 |
|
elfvex |
⊢ ( 𝑈 ∈ ( LSubSp ‘ 𝑊 ) → 𝑊 ∈ V ) |
8 |
7 6
|
eleq2s |
⊢ ( 𝑈 ∈ 𝑆 → 𝑊 ∈ V ) |
9 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( Base ‘ 𝑊 ) = ∅ ) |
10 |
3 9
|
eqtrid |
⊢ ( ¬ 𝑊 ∈ V → 𝑉 = ∅ ) |
11 |
10
|
sseq2d |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑈 ⊆ 𝑉 ↔ 𝑈 ⊆ ∅ ) ) |
12 |
11
|
biimpcd |
⊢ ( 𝑈 ⊆ 𝑉 → ( ¬ 𝑊 ∈ V → 𝑈 ⊆ ∅ ) ) |
13 |
|
ss0 |
⊢ ( 𝑈 ⊆ ∅ → 𝑈 = ∅ ) |
14 |
12 13
|
syl6 |
⊢ ( 𝑈 ⊆ 𝑉 → ( ¬ 𝑊 ∈ V → 𝑈 = ∅ ) ) |
15 |
14
|
necon1ad |
⊢ ( 𝑈 ⊆ 𝑉 → ( 𝑈 ≠ ∅ → 𝑊 ∈ V ) ) |
16 |
15
|
imp |
⊢ ( ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ) → 𝑊 ∈ V ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) → 𝑊 ∈ V ) |
18 |
1 2 3 4 5 6
|
lssset |
⊢ ( 𝑊 ∈ V → 𝑆 = { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ) |
19 |
18
|
eleq2d |
⊢ ( 𝑊 ∈ V → ( 𝑈 ∈ 𝑆 ↔ 𝑈 ∈ { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ) ) |
20 |
|
eldifsn |
⊢ ( 𝑈 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ ( 𝑈 ∈ 𝒫 𝑉 ∧ 𝑈 ≠ ∅ ) ) |
21 |
3
|
fvexi |
⊢ 𝑉 ∈ V |
22 |
21
|
elpw2 |
⊢ ( 𝑈 ∈ 𝒫 𝑉 ↔ 𝑈 ⊆ 𝑉 ) |
23 |
22
|
anbi1i |
⊢ ( ( 𝑈 ∈ 𝒫 𝑉 ∧ 𝑈 ≠ ∅ ) ↔ ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ) ) |
24 |
20 23
|
bitri |
⊢ ( 𝑈 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ) ) |
25 |
24
|
anbi1i |
⊢ ( ( 𝑈 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ↔ ( ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
26 |
|
eleq2 |
⊢ ( 𝑠 = 𝑈 → ( ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 ↔ ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
27 |
26
|
raleqbi1dv |
⊢ ( 𝑠 = 𝑈 → ( ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
28 |
27
|
raleqbi1dv |
⊢ ( 𝑠 = 𝑈 → ( ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
29 |
28
|
ralbidv |
⊢ ( 𝑠 = 𝑈 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
30 |
29
|
elrab |
⊢ ( 𝑈 ∈ { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ↔ ( 𝑈 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
31 |
|
df-3an |
⊢ ( ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ↔ ( ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
32 |
25 30 31
|
3bitr4i |
⊢ ( 𝑈 ∈ { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ↔ ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
33 |
19 32
|
bitrdi |
⊢ ( 𝑊 ∈ V → ( 𝑈 ∈ 𝑆 ↔ ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) ) |
34 |
8 17 33
|
pm5.21nii |
⊢ ( 𝑈 ∈ 𝑆 ↔ ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |