Metamath Proof Explorer


Theorem islss

Description: The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypotheses lssset.f 𝐹 = ( Scalar ‘ 𝑊 )
lssset.b 𝐵 = ( Base ‘ 𝐹 )
lssset.v 𝑉 = ( Base ‘ 𝑊 )
lssset.p + = ( +g𝑊 )
lssset.t · = ( ·𝑠𝑊 )
lssset.s 𝑆 = ( LSubSp ‘ 𝑊 )
Assertion islss ( 𝑈𝑆 ↔ ( 𝑈𝑉𝑈 ≠ ∅ ∧ ∀ 𝑥𝐵𝑎𝑈𝑏𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) )

Proof

Step Hyp Ref Expression
1 lssset.f 𝐹 = ( Scalar ‘ 𝑊 )
2 lssset.b 𝐵 = ( Base ‘ 𝐹 )
3 lssset.v 𝑉 = ( Base ‘ 𝑊 )
4 lssset.p + = ( +g𝑊 )
5 lssset.t · = ( ·𝑠𝑊 )
6 lssset.s 𝑆 = ( LSubSp ‘ 𝑊 )
7 elfvex ( 𝑈 ∈ ( LSubSp ‘ 𝑊 ) → 𝑊 ∈ V )
8 7 6 eleq2s ( 𝑈𝑆𝑊 ∈ V )
9 fvprc ( ¬ 𝑊 ∈ V → ( Base ‘ 𝑊 ) = ∅ )
10 3 9 eqtrid ( ¬ 𝑊 ∈ V → 𝑉 = ∅ )
11 10 sseq2d ( ¬ 𝑊 ∈ V → ( 𝑈𝑉𝑈 ⊆ ∅ ) )
12 11 biimpcd ( 𝑈𝑉 → ( ¬ 𝑊 ∈ V → 𝑈 ⊆ ∅ ) )
13 ss0 ( 𝑈 ⊆ ∅ → 𝑈 = ∅ )
14 12 13 syl6 ( 𝑈𝑉 → ( ¬ 𝑊 ∈ V → 𝑈 = ∅ ) )
15 14 necon1ad ( 𝑈𝑉 → ( 𝑈 ≠ ∅ → 𝑊 ∈ V ) )
16 15 imp ( ( 𝑈𝑉𝑈 ≠ ∅ ) → 𝑊 ∈ V )
17 16 3adant3 ( ( 𝑈𝑉𝑈 ≠ ∅ ∧ ∀ 𝑥𝐵𝑎𝑈𝑏𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) → 𝑊 ∈ V )
18 1 2 3 4 5 6 lssset ( 𝑊 ∈ V → 𝑆 = { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥𝐵𝑎𝑠𝑏𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } )
19 18 eleq2d ( 𝑊 ∈ V → ( 𝑈𝑆𝑈 ∈ { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥𝐵𝑎𝑠𝑏𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ) )
20 eldifsn ( 𝑈 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ ( 𝑈 ∈ 𝒫 𝑉𝑈 ≠ ∅ ) )
21 3 fvexi 𝑉 ∈ V
22 21 elpw2 ( 𝑈 ∈ 𝒫 𝑉𝑈𝑉 )
23 22 anbi1i ( ( 𝑈 ∈ 𝒫 𝑉𝑈 ≠ ∅ ) ↔ ( 𝑈𝑉𝑈 ≠ ∅ ) )
24 20 23 bitri ( 𝑈 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ ( 𝑈𝑉𝑈 ≠ ∅ ) )
25 24 anbi1i ( ( 𝑈 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ∀ 𝑥𝐵𝑎𝑈𝑏𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ↔ ( ( 𝑈𝑉𝑈 ≠ ∅ ) ∧ ∀ 𝑥𝐵𝑎𝑈𝑏𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) )
26 eleq2 ( 𝑠 = 𝑈 → ( ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 ↔ ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) )
27 26 raleqbi1dv ( 𝑠 = 𝑈 → ( ∀ 𝑏𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑏𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) )
28 27 raleqbi1dv ( 𝑠 = 𝑈 → ( ∀ 𝑎𝑠𝑏𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑎𝑈𝑏𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) )
29 28 ralbidv ( 𝑠 = 𝑈 → ( ∀ 𝑥𝐵𝑎𝑠𝑏𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑥𝐵𝑎𝑈𝑏𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) )
30 29 elrab ( 𝑈 ∈ { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥𝐵𝑎𝑠𝑏𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ↔ ( 𝑈 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ∀ 𝑥𝐵𝑎𝑈𝑏𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) )
31 df-3an ( ( 𝑈𝑉𝑈 ≠ ∅ ∧ ∀ 𝑥𝐵𝑎𝑈𝑏𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ↔ ( ( 𝑈𝑉𝑈 ≠ ∅ ) ∧ ∀ 𝑥𝐵𝑎𝑈𝑏𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) )
32 25 30 31 3bitr4i ( 𝑈 ∈ { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥𝐵𝑎𝑠𝑏𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ↔ ( 𝑈𝑉𝑈 ≠ ∅ ∧ ∀ 𝑥𝐵𝑎𝑈𝑏𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) )
33 19 32 bitrdi ( 𝑊 ∈ V → ( 𝑈𝑆 ↔ ( 𝑈𝑉𝑈 ≠ ∅ ∧ ∀ 𝑥𝐵𝑎𝑈𝑏𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) )
34 8 17 33 pm5.21nii ( 𝑈𝑆 ↔ ( 𝑈𝑉𝑈 ≠ ∅ ∧ ∀ 𝑥𝐵𝑎𝑈𝑏𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) )