| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islssd.f |
|- ( ph -> F = ( Scalar ` W ) ) |
| 2 |
|
islssd.b |
|- ( ph -> B = ( Base ` F ) ) |
| 3 |
|
islssd.v |
|- ( ph -> V = ( Base ` W ) ) |
| 4 |
|
islssd.p |
|- ( ph -> .+ = ( +g ` W ) ) |
| 5 |
|
islssd.t |
|- ( ph -> .x. = ( .s ` W ) ) |
| 6 |
|
islssd.s |
|- ( ph -> S = ( LSubSp ` W ) ) |
| 7 |
|
islssd.u |
|- ( ph -> U C_ V ) |
| 8 |
|
islssd.z |
|- ( ph -> U =/= (/) ) |
| 9 |
|
islssd.c |
|- ( ( ph /\ ( x e. B /\ a e. U /\ b e. U ) ) -> ( ( x .x. a ) .+ b ) e. U ) |
| 10 |
7 3
|
sseqtrd |
|- ( ph -> U C_ ( Base ` W ) ) |
| 11 |
9
|
3exp2 |
|- ( ph -> ( x e. B -> ( a e. U -> ( b e. U -> ( ( x .x. a ) .+ b ) e. U ) ) ) ) |
| 12 |
11
|
imp43 |
|- ( ( ( ph /\ x e. B ) /\ ( a e. U /\ b e. U ) ) -> ( ( x .x. a ) .+ b ) e. U ) |
| 13 |
12
|
ralrimivva |
|- ( ( ph /\ x e. B ) -> A. a e. U A. b e. U ( ( x .x. a ) .+ b ) e. U ) |
| 14 |
13
|
ex |
|- ( ph -> ( x e. B -> A. a e. U A. b e. U ( ( x .x. a ) .+ b ) e. U ) ) |
| 15 |
1
|
fveq2d |
|- ( ph -> ( Base ` F ) = ( Base ` ( Scalar ` W ) ) ) |
| 16 |
2 15
|
eqtrd |
|- ( ph -> B = ( Base ` ( Scalar ` W ) ) ) |
| 17 |
16
|
eleq2d |
|- ( ph -> ( x e. B <-> x e. ( Base ` ( Scalar ` W ) ) ) ) |
| 18 |
4
|
oveqd |
|- ( ph -> ( ( x .x. a ) .+ b ) = ( ( x .x. a ) ( +g ` W ) b ) ) |
| 19 |
5
|
oveqd |
|- ( ph -> ( x .x. a ) = ( x ( .s ` W ) a ) ) |
| 20 |
19
|
oveq1d |
|- ( ph -> ( ( x .x. a ) ( +g ` W ) b ) = ( ( x ( .s ` W ) a ) ( +g ` W ) b ) ) |
| 21 |
18 20
|
eqtrd |
|- ( ph -> ( ( x .x. a ) .+ b ) = ( ( x ( .s ` W ) a ) ( +g ` W ) b ) ) |
| 22 |
21
|
eleq1d |
|- ( ph -> ( ( ( x .x. a ) .+ b ) e. U <-> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. U ) ) |
| 23 |
22
|
2ralbidv |
|- ( ph -> ( A. a e. U A. b e. U ( ( x .x. a ) .+ b ) e. U <-> A. a e. U A. b e. U ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. U ) ) |
| 24 |
14 17 23
|
3imtr3d |
|- ( ph -> ( x e. ( Base ` ( Scalar ` W ) ) -> A. a e. U A. b e. U ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. U ) ) |
| 25 |
24
|
ralrimiv |
|- ( ph -> A. x e. ( Base ` ( Scalar ` W ) ) A. a e. U A. b e. U ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. U ) |
| 26 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 27 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 28 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 29 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
| 30 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 31 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 32 |
26 27 28 29 30 31
|
islss |
|- ( U e. ( LSubSp ` W ) <-> ( U C_ ( Base ` W ) /\ U =/= (/) /\ A. x e. ( Base ` ( Scalar ` W ) ) A. a e. U A. b e. U ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. U ) ) |
| 33 |
10 8 25 32
|
syl3anbrc |
|- ( ph -> U e. ( LSubSp ` W ) ) |
| 34 |
33 6
|
eleqtrrd |
|- ( ph -> U e. S ) |