Description: A subspace member is a vector. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 8-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssss.v | |- V = ( Base ` W ) |
|
| lssss.s | |- S = ( LSubSp ` W ) |
||
| Assertion | lssel | |- ( ( U e. S /\ X e. U ) -> X e. V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssss.v | |- V = ( Base ` W ) |
|
| 2 | lssss.s | |- S = ( LSubSp ` W ) |
|
| 3 | 1 2 | lssss | |- ( U e. S -> U C_ V ) |
| 4 | 3 | sselda | |- ( ( U e. S /\ X e. U ) -> X e. V ) |