Step |
Hyp |
Ref |
Expression |
1 |
|
lssss.v |
|- V = ( Base ` W ) |
2 |
|
lssss.s |
|- S = ( LSubSp ` W ) |
3 |
|
eqidd |
|- ( W e. LMod -> ( Scalar ` W ) = ( Scalar ` W ) ) |
4 |
|
eqidd |
|- ( W e. LMod -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) ) |
5 |
1
|
a1i |
|- ( W e. LMod -> V = ( Base ` W ) ) |
6 |
|
eqidd |
|- ( W e. LMod -> ( +g ` W ) = ( +g ` W ) ) |
7 |
|
eqidd |
|- ( W e. LMod -> ( .s ` W ) = ( .s ` W ) ) |
8 |
2
|
a1i |
|- ( W e. LMod -> S = ( LSubSp ` W ) ) |
9 |
|
ssidd |
|- ( W e. LMod -> V C_ V ) |
10 |
1
|
lmodbn0 |
|- ( W e. LMod -> V =/= (/) ) |
11 |
|
simpl |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. V /\ b e. V ) ) -> W e. LMod ) |
12 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
13 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
14 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
15 |
1 12 13 14
|
lmodvscl |
|- ( ( W e. LMod /\ x e. ( Base ` ( Scalar ` W ) ) /\ a e. V ) -> ( x ( .s ` W ) a ) e. V ) |
16 |
15
|
3adant3r3 |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. V /\ b e. V ) ) -> ( x ( .s ` W ) a ) e. V ) |
17 |
|
simpr3 |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. V /\ b e. V ) ) -> b e. V ) |
18 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
19 |
1 18
|
lmodvacl |
|- ( ( W e. LMod /\ ( x ( .s ` W ) a ) e. V /\ b e. V ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. V ) |
20 |
11 16 17 19
|
syl3anc |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. V /\ b e. V ) ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. V ) |
21 |
3 4 5 6 7 8 9 10 20
|
islssd |
|- ( W e. LMod -> V e. S ) |