Description: The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lssss.v | |- V = ( Base ` W ) |
|
lssss.s | |- S = ( LSubSp ` W ) |
||
lssuni.w | |- ( ph -> W e. LMod ) |
||
Assertion | lssuni | |- ( ph -> U. S = V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssss.v | |- V = ( Base ` W ) |
|
2 | lssss.s | |- S = ( LSubSp ` W ) |
|
3 | lssuni.w | |- ( ph -> W e. LMod ) |
|
4 | rabid2 | |- ( S = { x e. S | x C_ V } <-> A. x e. S x C_ V ) |
|
5 | 1 2 | lssss | |- ( x e. S -> x C_ V ) |
6 | 4 5 | mprgbir | |- S = { x e. S | x C_ V } |
7 | 6 | unieqi | |- U. S = U. { x e. S | x C_ V } |
8 | 1 2 | lss1 | |- ( W e. LMod -> V e. S ) |
9 | unimax | |- ( V e. S -> U. { x e. S | x C_ V } = V ) |
|
10 | 3 8 9 | 3syl | |- ( ph -> U. { x e. S | x C_ V } = V ) |
11 | 7 10 | eqtrid | |- ( ph -> U. S = V ) |