Metamath Proof Explorer


Theorem lssuni

Description: The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses lssss.v 𝑉 = ( Base ‘ 𝑊 )
lssss.s 𝑆 = ( LSubSp ‘ 𝑊 )
lssuni.w ( 𝜑𝑊 ∈ LMod )
Assertion lssuni ( 𝜑 𝑆 = 𝑉 )

Proof

Step Hyp Ref Expression
1 lssss.v 𝑉 = ( Base ‘ 𝑊 )
2 lssss.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 lssuni.w ( 𝜑𝑊 ∈ LMod )
4 rabid2 ( 𝑆 = { 𝑥𝑆𝑥𝑉 } ↔ ∀ 𝑥𝑆 𝑥𝑉 )
5 1 2 lssss ( 𝑥𝑆𝑥𝑉 )
6 4 5 mprgbir 𝑆 = { 𝑥𝑆𝑥𝑉 }
7 6 unieqi 𝑆 = { 𝑥𝑆𝑥𝑉 }
8 1 2 lss1 ( 𝑊 ∈ LMod → 𝑉𝑆 )
9 unimax ( 𝑉𝑆 { 𝑥𝑆𝑥𝑉 } = 𝑉 )
10 3 8 9 3syl ( 𝜑 { 𝑥𝑆𝑥𝑉 } = 𝑉 )
11 7 10 eqtrid ( 𝜑 𝑆 = 𝑉 )