Metamath Proof Explorer


Theorem unimax

Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002)

Ref Expression
Assertion unimax ( 𝐴𝐵 { 𝑥𝐵𝑥𝐴 } = 𝐴 )

Proof

Step Hyp Ref Expression
1 ssid 𝐴𝐴
2 sseq1 ( 𝑥 = 𝐴 → ( 𝑥𝐴𝐴𝐴 ) )
3 2 elrab3 ( 𝐴𝐵 → ( 𝐴 ∈ { 𝑥𝐵𝑥𝐴 } ↔ 𝐴𝐴 ) )
4 1 3 mpbiri ( 𝐴𝐵𝐴 ∈ { 𝑥𝐵𝑥𝐴 } )
5 sseq1 ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
6 5 elrab ( 𝑦 ∈ { 𝑥𝐵𝑥𝐴 } ↔ ( 𝑦𝐵𝑦𝐴 ) )
7 6 simprbi ( 𝑦 ∈ { 𝑥𝐵𝑥𝐴 } → 𝑦𝐴 )
8 7 rgen 𝑦 ∈ { 𝑥𝐵𝑥𝐴 } 𝑦𝐴
9 ssunieq ( ( 𝐴 ∈ { 𝑥𝐵𝑥𝐴 } ∧ ∀ 𝑦 ∈ { 𝑥𝐵𝑥𝐴 } 𝑦𝐴 ) → 𝐴 = { 𝑥𝐵𝑥𝐴 } )
10 9 eqcomd ( ( 𝐴 ∈ { 𝑥𝐵𝑥𝐴 } ∧ ∀ 𝑦 ∈ { 𝑥𝐵𝑥𝐴 } 𝑦𝐴 ) → { 𝑥𝐵𝑥𝐴 } = 𝐴 )
11 4 8 10 sylancl ( 𝐴𝐵 { 𝑥𝐵𝑥𝐴 } = 𝐴 )