| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
| 2 |
|
sseq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) |
| 3 |
2
|
elrab3 |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ↔ 𝐴 ⊆ 𝐴 ) ) |
| 4 |
1 3
|
mpbiri |
⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) |
| 5 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) |
| 6 |
5
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) ) |
| 7 |
6
|
simprbi |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → 𝑦 ⊆ 𝐴 ) |
| 8 |
7
|
rgen |
⊢ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } 𝑦 ⊆ 𝐴 |
| 9 |
|
ssunieq |
⊢ ( ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } 𝑦 ⊆ 𝐴 ) → 𝐴 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) |
| 10 |
9
|
eqcomd |
⊢ ( ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } 𝑦 ⊆ 𝐴 ) → ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } = 𝐴 ) |
| 11 |
4 8 10
|
sylancl |
⊢ ( 𝐴 ∈ 𝐵 → ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } = 𝐴 ) |