Metamath Proof Explorer


Theorem unimax

Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002)

Ref Expression
Assertion unimax A B x B | x A = A

Proof

Step Hyp Ref Expression
1 ssid A A
2 sseq1 x = A x A A A
3 2 elrab3 A B A x B | x A A A
4 1 3 mpbiri A B A x B | x A
5 sseq1 x = y x A y A
6 5 elrab y x B | x A y B y A
7 6 simprbi y x B | x A y A
8 7 rgen y x B | x A y A
9 ssunieq A x B | x A y x B | x A y A A = x B | x A
10 9 eqcomd A x B | x A y x B | x A y A x B | x A = A
11 4 8 10 sylancl A B x B | x A = A