Metamath Proof Explorer


Theorem unimax

Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002)

Ref Expression
Assertion unimax ABxB|xA=A

Proof

Step Hyp Ref Expression
1 ssid AA
2 sseq1 x=AxAAA
3 2 elrab3 ABAxB|xAAA
4 1 3 mpbiri ABAxB|xA
5 sseq1 x=yxAyA
6 5 elrab yxB|xAyByA
7 6 simprbi yxB|xAyA
8 7 rgen yxB|xAyA
9 ssunieq AxB|xAyxB|xAyAA=xB|xA
10 9 eqcomd AxB|xAyxB|xAyAxB|xA=A
11 4 8 10 sylancl ABxB|xA=A