Metamath Proof Explorer


Theorem ssunieq

Description: Relationship implying union. (Contributed by NM, 10-Nov-1999)

Ref Expression
Assertion ssunieq ABxBxAA=B

Proof

Step Hyp Ref Expression
1 elssuni ABAB
2 unissb BAxBxA
3 2 biimpri xBxABA
4 1 3 anim12i ABxBxAABBA
5 eqss A=BABBA
6 4 5 sylibr ABxBxAA=B