Metamath Proof Explorer


Theorem lssuni

Description: The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses lssss.v V = Base W
lssss.s S = LSubSp W
lssuni.w φ W LMod
Assertion lssuni φ S = V

Proof

Step Hyp Ref Expression
1 lssss.v V = Base W
2 lssss.s S = LSubSp W
3 lssuni.w φ W LMod
4 rabid2 S = x S | x V x S x V
5 1 2 lssss x S x V
6 4 5 mprgbir S = x S | x V
7 6 unieqi S = x S | x V
8 1 2 lss1 W LMod V S
9 unimax V S x S | x V = V
10 3 8 9 3syl φ x S | x V = V
11 7 10 eqtrid φ S = V