Metamath Proof Explorer


Theorem lss1

Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lssss.v V = Base W
lssss.s S = LSubSp W
Assertion lss1 W LMod V S

Proof

Step Hyp Ref Expression
1 lssss.v V = Base W
2 lssss.s S = LSubSp W
3 eqidd W LMod Scalar W = Scalar W
4 eqidd W LMod Base Scalar W = Base Scalar W
5 1 a1i W LMod V = Base W
6 eqidd W LMod + W = + W
7 eqidd W LMod W = W
8 2 a1i W LMod S = LSubSp W
9 ssidd W LMod V V
10 1 lmodbn0 W LMod V
11 simpl W LMod x Base Scalar W a V b V W LMod
12 eqid Scalar W = Scalar W
13 eqid W = W
14 eqid Base Scalar W = Base Scalar W
15 1 12 13 14 lmodvscl W LMod x Base Scalar W a V x W a V
16 15 3adant3r3 W LMod x Base Scalar W a V b V x W a V
17 simpr3 W LMod x Base Scalar W a V b V b V
18 eqid + W = + W
19 1 18 lmodvacl W LMod x W a V b V x W a + W b V
20 11 16 17 19 syl3anc W LMod x Base Scalar W a V b V x W a + W b V
21 3 4 5 6 7 8 9 10 20 islssd W LMod V S