Metamath Proof Explorer


Theorem lmodbn0

Description: The base set of a left module is nonempty. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypothesis lmodbn0.b B=BaseW
Assertion lmodbn0 WLModB

Proof

Step Hyp Ref Expression
1 lmodbn0.b B=BaseW
2 lmodgrp WLModWGrp
3 1 grpbn0 WGrpB
4 2 3 syl WLModB