Step |
Hyp |
Ref |
Expression |
1 |
|
lssss.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lssss.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
eqidd |
⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ) |
4 |
|
eqidd |
⊢ ( 𝑊 ∈ LMod → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
5 |
1
|
a1i |
⊢ ( 𝑊 ∈ LMod → 𝑉 = ( Base ‘ 𝑊 ) ) |
6 |
|
eqidd |
⊢ ( 𝑊 ∈ LMod → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) ) |
7 |
|
eqidd |
⊢ ( 𝑊 ∈ LMod → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) ) |
8 |
2
|
a1i |
⊢ ( 𝑊 ∈ LMod → 𝑆 = ( LSubSp ‘ 𝑊 ) ) |
9 |
|
ssidd |
⊢ ( 𝑊 ∈ LMod → 𝑉 ⊆ 𝑉 ) |
10 |
1
|
lmodbn0 |
⊢ ( 𝑊 ∈ LMod → 𝑉 ≠ ∅ ) |
11 |
|
simpl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑊 ∈ LMod ) |
12 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
13 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
14 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
15 |
1 12 13 14
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑉 ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ∈ 𝑉 ) |
16 |
15
|
3adant3r3 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ∈ 𝑉 ) |
17 |
|
simpr3 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑏 ∈ 𝑉 ) |
18 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
19 |
1 18
|
lmodvacl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑉 ) |
20 |
11 16 17 19
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑉 ) |
21 |
3 4 5 6 7 8 9 10 20
|
islssd |
⊢ ( 𝑊 ∈ LMod → 𝑉 ∈ 𝑆 ) |