Metamath Proof Explorer


Theorem lss1

Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lssss.v 𝑉 = ( Base ‘ 𝑊 )
lssss.s 𝑆 = ( LSubSp ‘ 𝑊 )
Assertion lss1 ( 𝑊 ∈ LMod → 𝑉𝑆 )

Proof

Step Hyp Ref Expression
1 lssss.v 𝑉 = ( Base ‘ 𝑊 )
2 lssss.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 eqidd ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) )
4 eqidd ( 𝑊 ∈ LMod → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
5 1 a1i ( 𝑊 ∈ LMod → 𝑉 = ( Base ‘ 𝑊 ) )
6 eqidd ( 𝑊 ∈ LMod → ( +g𝑊 ) = ( +g𝑊 ) )
7 eqidd ( 𝑊 ∈ LMod → ( ·𝑠𝑊 ) = ( ·𝑠𝑊 ) )
8 2 a1i ( 𝑊 ∈ LMod → 𝑆 = ( LSubSp ‘ 𝑊 ) )
9 ssidd ( 𝑊 ∈ LMod → 𝑉𝑉 )
10 1 lmodbn0 ( 𝑊 ∈ LMod → 𝑉 ≠ ∅ )
11 simpl ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎𝑉𝑏𝑉 ) ) → 𝑊 ∈ LMod )
12 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
13 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
14 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
15 1 12 13 14 lmodvscl ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎𝑉 ) → ( 𝑥 ( ·𝑠𝑊 ) 𝑎 ) ∈ 𝑉 )
16 15 3adant3r3 ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎𝑉𝑏𝑉 ) ) → ( 𝑥 ( ·𝑠𝑊 ) 𝑎 ) ∈ 𝑉 )
17 simpr3 ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎𝑉𝑏𝑉 ) ) → 𝑏𝑉 )
18 eqid ( +g𝑊 ) = ( +g𝑊 )
19 1 18 lmodvacl ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ( ·𝑠𝑊 ) 𝑎 ) ∈ 𝑉𝑏𝑉 ) → ( ( 𝑥 ( ·𝑠𝑊 ) 𝑎 ) ( +g𝑊 ) 𝑏 ) ∈ 𝑉 )
20 11 16 17 19 syl3anc ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎𝑉𝑏𝑉 ) ) → ( ( 𝑥 ( ·𝑠𝑊 ) 𝑎 ) ( +g𝑊 ) 𝑏 ) ∈ 𝑉 )
21 3 4 5 6 7 8 9 10 20 islssd ( 𝑊 ∈ LMod → 𝑉𝑆 )