Metamath Proof Explorer


Theorem rabid2

Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Assertion rabid2 ( 𝐴 = { 𝑥𝐴𝜑 } ↔ ∀ 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 abeq2 ( 𝐴 = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ↔ ∀ 𝑥 ( 𝑥𝐴 ↔ ( 𝑥𝐴𝜑 ) ) )
2 pm4.71 ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐴 ↔ ( 𝑥𝐴𝜑 ) ) )
3 2 albii ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑥 ( 𝑥𝐴 ↔ ( 𝑥𝐴𝜑 ) ) )
4 1 3 bitr4i ( 𝐴 = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
5 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
6 5 eqeq2i ( 𝐴 = { 𝑥𝐴𝜑 } ↔ 𝐴 = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } )
7 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
8 4 6 7 3bitr4i ( 𝐴 = { 𝑥𝐴𝜑 } ↔ ∀ 𝑥𝐴 𝜑 )