Description: Subtraction of a vector from itself. ( hvsubid analog.) (Contributed by NM, 16-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodsubeq0.v | |- V = ( Base ` W ) |
|
| lmodsubeq0.o | |- .0. = ( 0g ` W ) |
||
| lmodsubeq0.m | |- .- = ( -g ` W ) |
||
| Assertion | lmodsubid | |- ( ( W e. LMod /\ A e. V ) -> ( A .- A ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsubeq0.v | |- V = ( Base ` W ) |
|
| 2 | lmodsubeq0.o | |- .0. = ( 0g ` W ) |
|
| 3 | lmodsubeq0.m | |- .- = ( -g ` W ) |
|
| 4 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
| 5 | 1 2 3 | grpsubid | |- ( ( W e. Grp /\ A e. V ) -> ( A .- A ) = .0. ) |
| 6 | 4 5 | sylan | |- ( ( W e. LMod /\ A e. V ) -> ( A .- A ) = .0. ) |