Metamath Proof Explorer


Theorem lsscl

Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypotheses lsscl.f 𝐹 = ( Scalar ‘ 𝑊 )
lsscl.b 𝐵 = ( Base ‘ 𝐹 )
lsscl.p + = ( +g𝑊 )
lsscl.t · = ( ·𝑠𝑊 )
lsscl.s 𝑆 = ( LSubSp ‘ 𝑊 )
Assertion lsscl ( ( 𝑈𝑆 ∧ ( 𝑍𝐵𝑋𝑈𝑌𝑈 ) ) → ( ( 𝑍 · 𝑋 ) + 𝑌 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 lsscl.f 𝐹 = ( Scalar ‘ 𝑊 )
2 lsscl.b 𝐵 = ( Base ‘ 𝐹 )
3 lsscl.p + = ( +g𝑊 )
4 lsscl.t · = ( ·𝑠𝑊 )
5 lsscl.s 𝑆 = ( LSubSp ‘ 𝑊 )
6 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
7 1 2 6 3 4 5 islss ( 𝑈𝑆 ↔ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥𝐵𝑎𝑈𝑏𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) )
8 7 simp3bi ( 𝑈𝑆 → ∀ 𝑥𝐵𝑎𝑈𝑏𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 )
9 oveq1 ( 𝑥 = 𝑍 → ( 𝑥 · 𝑎 ) = ( 𝑍 · 𝑎 ) )
10 9 oveq1d ( 𝑥 = 𝑍 → ( ( 𝑥 · 𝑎 ) + 𝑏 ) = ( ( 𝑍 · 𝑎 ) + 𝑏 ) )
11 10 eleq1d ( 𝑥 = 𝑍 → ( ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ↔ ( ( 𝑍 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) )
12 oveq2 ( 𝑎 = 𝑋 → ( 𝑍 · 𝑎 ) = ( 𝑍 · 𝑋 ) )
13 12 oveq1d ( 𝑎 = 𝑋 → ( ( 𝑍 · 𝑎 ) + 𝑏 ) = ( ( 𝑍 · 𝑋 ) + 𝑏 ) )
14 13 eleq1d ( 𝑎 = 𝑋 → ( ( ( 𝑍 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ↔ ( ( 𝑍 · 𝑋 ) + 𝑏 ) ∈ 𝑈 ) )
15 oveq2 ( 𝑏 = 𝑌 → ( ( 𝑍 · 𝑋 ) + 𝑏 ) = ( ( 𝑍 · 𝑋 ) + 𝑌 ) )
16 15 eleq1d ( 𝑏 = 𝑌 → ( ( ( 𝑍 · 𝑋 ) + 𝑏 ) ∈ 𝑈 ↔ ( ( 𝑍 · 𝑋 ) + 𝑌 ) ∈ 𝑈 ) )
17 11 14 16 rspc3v ( ( 𝑍𝐵𝑋𝑈𝑌𝑈 ) → ( ∀ 𝑥𝐵𝑎𝑈𝑏𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 → ( ( 𝑍 · 𝑋 ) + 𝑌 ) ∈ 𝑈 ) )
18 8 17 mpan9 ( ( 𝑈𝑆 ∧ ( 𝑍𝐵𝑋𝑈𝑌𝑈 ) ) → ( ( 𝑍 · 𝑋 ) + 𝑌 ) ∈ 𝑈 )