Metamath Proof Explorer


Theorem lssvacl

Description: Closure of vector addition in a subspace. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lssvacl.p + ˙ = + W
lssvacl.s S = LSubSp W
Assertion lssvacl W LMod U S X U Y U X + ˙ Y U

Proof

Step Hyp Ref Expression
1 lssvacl.p + ˙ = + W
2 lssvacl.s S = LSubSp W
3 simpll W LMod U S X U Y U W LMod
4 eqid Base W = Base W
5 4 2 lssel U S X U X Base W
6 5 ad2ant2lr W LMod U S X U Y U X Base W
7 eqid Scalar W = Scalar W
8 eqid W = W
9 eqid 1 Scalar W = 1 Scalar W
10 4 7 8 9 lmodvs1 W LMod X Base W 1 Scalar W W X = X
11 3 6 10 syl2anc W LMod U S X U Y U 1 Scalar W W X = X
12 11 oveq1d W LMod U S X U Y U 1 Scalar W W X + ˙ Y = X + ˙ Y
13 simplr W LMod U S X U Y U U S
14 eqid Base Scalar W = Base Scalar W
15 7 14 9 lmod1cl W LMod 1 Scalar W Base Scalar W
16 15 ad2antrr W LMod U S X U Y U 1 Scalar W Base Scalar W
17 simprl W LMod U S X U Y U X U
18 simprr W LMod U S X U Y U Y U
19 7 14 1 8 2 lsscl U S 1 Scalar W Base Scalar W X U Y U 1 Scalar W W X + ˙ Y U
20 13 16 17 18 19 syl13anc W LMod U S X U Y U 1 Scalar W W X + ˙ Y U
21 12 20 eqeltrrd W LMod U S X U Y U X + ˙ Y U