Metamath Proof Explorer


Theorem lssvacl

Description: Closure of vector addition in a subspace. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lssvacl.p +˙=+W
lssvacl.s S=LSubSpW
Assertion lssvacl WLModUSXUYUX+˙YU

Proof

Step Hyp Ref Expression
1 lssvacl.p +˙=+W
2 lssvacl.s S=LSubSpW
3 simpll WLModUSXUYUWLMod
4 eqid BaseW=BaseW
5 4 2 lssel USXUXBaseW
6 5 ad2ant2lr WLModUSXUYUXBaseW
7 eqid ScalarW=ScalarW
8 eqid W=W
9 eqid 1ScalarW=1ScalarW
10 4 7 8 9 lmodvs1 WLModXBaseW1ScalarWWX=X
11 3 6 10 syl2anc WLModUSXUYU1ScalarWWX=X
12 11 oveq1d WLModUSXUYU1ScalarWWX+˙Y=X+˙Y
13 simplr WLModUSXUYUUS
14 eqid BaseScalarW=BaseScalarW
15 7 14 9 lmod1cl WLMod1ScalarWBaseScalarW
16 15 ad2antrr WLModUSXUYU1ScalarWBaseScalarW
17 simprl WLModUSXUYUXU
18 simprr WLModUSXUYUYU
19 7 14 1 8 2 lsscl US1ScalarWBaseScalarWXUYU1ScalarWWX+˙YU
20 13 16 17 18 19 syl13anc WLModUSXUYU1ScalarWWX+˙YU
21 12 20 eqeltrrd WLModUSXUYUX+˙YU