Metamath Proof Explorer


Theorem lsssssubg

Description: All subspaces are subgroups. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsssubg.s S=LSubSpW
Assertion lsssssubg WLModSSubGrpW

Proof

Step Hyp Ref Expression
1 lsssubg.s S=LSubSpW
2 1 lsssubg WLModxSxSubGrpW
3 2 ex WLModxSxSubGrpW
4 3 ssrdv WLModSSubGrpW