Metamath Proof Explorer


Theorem islss3

Description: A linear subspace of a module is a subset which is a module in its own right. (Contributed by Stefan O'Rear, 6-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses islss3.x X = W 𝑠 U
islss3.v V = Base W
islss3.s S = LSubSp W
Assertion islss3 W LMod U S U V X LMod

Proof

Step Hyp Ref Expression
1 islss3.x X = W 𝑠 U
2 islss3.v V = Base W
3 islss3.s S = LSubSp W
4 2 3 lssss U S U V
5 4 adantl W LMod U S U V
6 1 2 ressbas2 U V U = Base X
7 6 adantl W LMod U V U = Base X
8 4 7 sylan2 W LMod U S U = Base X
9 eqid + W = + W
10 1 9 ressplusg U S + W = + X
11 10 adantl W LMod U S + W = + X
12 eqid Scalar W = Scalar W
13 1 12 resssca U S Scalar W = Scalar X
14 13 adantl W LMod U S Scalar W = Scalar X
15 eqid W = W
16 1 15 ressvsca U S W = X
17 16 adantl W LMod U S W = X
18 eqidd W LMod U S Base Scalar W = Base Scalar W
19 eqidd W LMod U S + Scalar W = + Scalar W
20 eqidd W LMod U S Scalar W = Scalar W
21 eqidd W LMod U S 1 Scalar W = 1 Scalar W
22 12 lmodring W LMod Scalar W Ring
23 22 adantr W LMod U S Scalar W Ring
24 3 lsssubg W LMod U S U SubGrp W
25 1 subggrp U SubGrp W X Grp
26 24 25 syl W LMod U S X Grp
27 eqid Base Scalar W = Base Scalar W
28 12 15 27 3 lssvscl W LMod U S x Base Scalar W a U x W a U
29 28 3impb W LMod U S x Base Scalar W a U x W a U
30 simpll W LMod U S x Base Scalar W a U b U W LMod
31 simpr1 W LMod U S x Base Scalar W a U b U x Base Scalar W
32 4 ad2antlr W LMod U S x Base Scalar W a U b U U V
33 simpr2 W LMod U S x Base Scalar W a U b U a U
34 32 33 sseldd W LMod U S x Base Scalar W a U b U a V
35 simpr3 W LMod U S x Base Scalar W a U b U b U
36 32 35 sseldd W LMod U S x Base Scalar W a U b U b V
37 2 9 12 15 27 lmodvsdi W LMod x Base Scalar W a V b V x W a + W b = x W a + W x W b
38 30 31 34 36 37 syl13anc W LMod U S x Base Scalar W a U b U x W a + W b = x W a + W x W b
39 simpll W LMod U S x Base Scalar W a Base Scalar W b U W LMod
40 simpr1 W LMod U S x Base Scalar W a Base Scalar W b U x Base Scalar W
41 simpr2 W LMod U S x Base Scalar W a Base Scalar W b U a Base Scalar W
42 4 ad2antlr W LMod U S x Base Scalar W a Base Scalar W b U U V
43 simpr3 W LMod U S x Base Scalar W a Base Scalar W b U b U
44 42 43 sseldd W LMod U S x Base Scalar W a Base Scalar W b U b V
45 eqid + Scalar W = + Scalar W
46 2 9 12 15 27 45 lmodvsdir W LMod x Base Scalar W a Base Scalar W b V x + Scalar W a W b = x W b + W a W b
47 39 40 41 44 46 syl13anc W LMod U S x Base Scalar W a Base Scalar W b U x + Scalar W a W b = x W b + W a W b
48 eqid Scalar W = Scalar W
49 2 12 15 27 48 lmodvsass W LMod x Base Scalar W a Base Scalar W b V x Scalar W a W b = x W a W b
50 39 40 41 44 49 syl13anc W LMod U S x Base Scalar W a Base Scalar W b U x Scalar W a W b = x W a W b
51 5 sselda W LMod U S x U x V
52 eqid 1 Scalar W = 1 Scalar W
53 2 12 15 52 lmodvs1 W LMod x V 1 Scalar W W x = x
54 53 adantlr W LMod U S x V 1 Scalar W W x = x
55 51 54 syldan W LMod U S x U 1 Scalar W W x = x
56 8 11 14 17 18 19 20 21 23 26 29 38 47 50 55 islmodd W LMod U S X LMod
57 5 56 jca W LMod U S U V X LMod
58 simprl W LMod U V X LMod U V
59 58 6 syl W LMod U V X LMod U = Base X
60 fvex Base X V
61 59 60 eqeltrdi W LMod U V X LMod U V
62 1 12 resssca U V Scalar W = Scalar X
63 61 62 syl W LMod U V X LMod Scalar W = Scalar X
64 63 eqcomd W LMod U V X LMod Scalar X = Scalar W
65 eqidd W LMod U V X LMod Base Scalar X = Base Scalar X
66 2 a1i W LMod U V X LMod V = Base W
67 1 9 ressplusg U V + W = + X
68 61 67 syl W LMod U V X LMod + W = + X
69 68 eqcomd W LMod U V X LMod + X = + W
70 1 15 ressvsca U V W = X
71 61 70 syl W LMod U V X LMod W = X
72 71 eqcomd W LMod U V X LMod X = W
73 3 a1i W LMod U V X LMod S = LSubSp W
74 59 58 eqsstrrd W LMod U V X LMod Base X V
75 lmodgrp X LMod X Grp
76 75 ad2antll W LMod U V X LMod X Grp
77 eqid Base X = Base X
78 77 grpbn0 X Grp Base X
79 76 78 syl W LMod U V X LMod Base X
80 eqid LSubSp X = LSubSp X
81 77 80 lss1 X LMod Base X LSubSp X
82 81 ad2antll W LMod U V X LMod Base X LSubSp X
83 eqid Scalar X = Scalar X
84 eqid Base Scalar X = Base Scalar X
85 eqid + X = + X
86 eqid X = X
87 83 84 85 86 80 lsscl Base X LSubSp X x Base Scalar X a Base X b Base X x X a + X b Base X
88 82 87 sylan W LMod U V X LMod x Base Scalar X a Base X b Base X x X a + X b Base X
89 64 65 66 69 72 73 74 79 88 islssd W LMod U V X LMod Base X S
90 59 89 eqeltrd W LMod U V X LMod U S
91 57 90 impbida W LMod U S U V X LMod