| Step | Hyp | Ref | Expression | 
						
							| 1 |  | islss3.x |  | 
						
							| 2 |  | islss3.v |  | 
						
							| 3 |  | islss3.s |  | 
						
							| 4 | 2 3 | lssss |  | 
						
							| 5 | 4 | adantl |  | 
						
							| 6 | 1 2 | ressbas2 |  | 
						
							| 7 | 6 | adantl |  | 
						
							| 8 | 4 7 | sylan2 |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 1 9 | ressplusg |  | 
						
							| 11 | 10 | adantl |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 1 12 | resssca |  | 
						
							| 14 | 13 | adantl |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 1 15 | ressvsca |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 |  | eqidd |  | 
						
							| 19 |  | eqidd |  | 
						
							| 20 |  | eqidd |  | 
						
							| 21 |  | eqidd |  | 
						
							| 22 | 12 | lmodring |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 | 3 | lsssubg |  | 
						
							| 25 | 1 | subggrp |  | 
						
							| 26 | 24 25 | syl |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 | 12 15 27 3 | lssvscl |  | 
						
							| 29 | 28 | 3impb |  | 
						
							| 30 |  | simpll |  | 
						
							| 31 |  | simpr1 |  | 
						
							| 32 | 4 | ad2antlr |  | 
						
							| 33 |  | simpr2 |  | 
						
							| 34 | 32 33 | sseldd |  | 
						
							| 35 |  | simpr3 |  | 
						
							| 36 | 32 35 | sseldd |  | 
						
							| 37 | 2 9 12 15 27 | lmodvsdi |  | 
						
							| 38 | 30 31 34 36 37 | syl13anc |  | 
						
							| 39 |  | simpll |  | 
						
							| 40 |  | simpr1 |  | 
						
							| 41 |  | simpr2 |  | 
						
							| 42 | 4 | ad2antlr |  | 
						
							| 43 |  | simpr3 |  | 
						
							| 44 | 42 43 | sseldd |  | 
						
							| 45 |  | eqid |  | 
						
							| 46 | 2 9 12 15 27 45 | lmodvsdir |  | 
						
							| 47 | 39 40 41 44 46 | syl13anc |  | 
						
							| 48 |  | eqid |  | 
						
							| 49 | 2 12 15 27 48 | lmodvsass |  | 
						
							| 50 | 39 40 41 44 49 | syl13anc |  | 
						
							| 51 | 5 | sselda |  | 
						
							| 52 |  | eqid |  | 
						
							| 53 | 2 12 15 52 | lmodvs1 |  | 
						
							| 54 | 53 | adantlr |  | 
						
							| 55 | 51 54 | syldan |  | 
						
							| 56 | 8 11 14 17 18 19 20 21 23 26 29 38 47 50 55 | islmodd |  | 
						
							| 57 | 5 56 | jca |  | 
						
							| 58 |  | simprl |  | 
						
							| 59 | 58 6 | syl |  | 
						
							| 60 |  | fvex |  | 
						
							| 61 | 59 60 | eqeltrdi |  | 
						
							| 62 | 1 12 | resssca |  | 
						
							| 63 | 61 62 | syl |  | 
						
							| 64 | 63 | eqcomd |  | 
						
							| 65 |  | eqidd |  | 
						
							| 66 | 2 | a1i |  | 
						
							| 67 | 1 9 | ressplusg |  | 
						
							| 68 | 61 67 | syl |  | 
						
							| 69 | 68 | eqcomd |  | 
						
							| 70 | 1 15 | ressvsca |  | 
						
							| 71 | 61 70 | syl |  | 
						
							| 72 | 71 | eqcomd |  | 
						
							| 73 | 3 | a1i |  | 
						
							| 74 | 59 58 | eqsstrrd |  | 
						
							| 75 |  | lmodgrp |  | 
						
							| 76 | 75 | ad2antll |  | 
						
							| 77 |  | eqid |  | 
						
							| 78 | 77 | grpbn0 |  | 
						
							| 79 | 76 78 | syl |  | 
						
							| 80 |  | eqid |  | 
						
							| 81 | 77 80 | lss1 |  | 
						
							| 82 | 81 | ad2antll |  | 
						
							| 83 |  | eqid |  | 
						
							| 84 |  | eqid |  | 
						
							| 85 |  | eqid |  | 
						
							| 86 |  | eqid |  | 
						
							| 87 | 83 84 85 86 80 | lsscl |  | 
						
							| 88 | 82 87 | sylan |  | 
						
							| 89 | 64 65 66 69 72 73 74 79 88 | islssd |  | 
						
							| 90 | 59 89 | eqeltrd |  | 
						
							| 91 | 57 90 | impbida |  |