Metamath Proof Explorer


Theorem phlssphl

Description: A subspace of an inner product space (pre-Hilbert space) is an inner product space. (Contributed by AV, 25-Sep-2022)

Ref Expression
Hypotheses phlssphl.x X=W𝑠U
phlssphl.s S=LSubSpW
Assertion phlssphl WPreHilUSXPreHil

Proof

Step Hyp Ref Expression
1 phlssphl.x X=W𝑠U
2 phlssphl.s S=LSubSpW
3 eqidd WPreHilUSBaseX=BaseX
4 eqidd WPreHilUS+X=+X
5 eqidd WPreHilUSX=X
6 eqidd WPreHilUS𝑖X=𝑖X
7 phllmod WPreHilWLMod
8 eqid 0W=0W
9 eqid 0X=0X
10 1 8 9 2 lss0v WLModUS0X=0W
11 7 10 sylan WPreHilUS0X=0W
12 11 eqcomd WPreHilUS0W=0X
13 eqidd WPreHilUSScalarX=ScalarX
14 eqidd WPreHilUSBaseScalarX=BaseScalarX
15 eqidd WPreHilUS+ScalarX=+ScalarX
16 eqidd WPreHilUSScalarX=ScalarX
17 eqidd WPreHilUS*ScalarX=*ScalarX
18 eqidd WPreHilUS0ScalarX=0ScalarX
19 phllvec WPreHilWLVec
20 1 2 lsslvec WLVecUSXLVec
21 19 20 sylan WPreHilUSXLVec
22 eqid ScalarW=ScalarW
23 1 22 resssca USScalarW=ScalarX
24 23 eqcomd USScalarX=ScalarW
25 24 adantl WPreHilUSScalarX=ScalarW
26 22 phlsrng WPreHilScalarW*-Ring
27 26 adantr WPreHilUSScalarW*-Ring
28 25 27 eqeltrd WPreHilUSScalarX*-Ring
29 simpl WPreHilUSWPreHil
30 eqid BaseW=BaseW
31 1 30 ressbasss BaseXBaseW
32 31 sseli xBaseXxBaseW
33 31 sseli yBaseXyBaseW
34 eqid 𝑖W=𝑖W
35 eqid BaseScalarW=BaseScalarW
36 22 34 30 35 ipcl WPreHilxBaseWyBaseWx𝑖WyBaseScalarW
37 29 32 33 36 syl3an WPreHilUSxBaseXyBaseXx𝑖WyBaseScalarW
38 24 fveq2d USBaseScalarX=BaseScalarW
39 38 eleq2d USx𝑖WyBaseScalarXx𝑖WyBaseScalarW
40 39 adantl WPreHilUSx𝑖WyBaseScalarXx𝑖WyBaseScalarW
41 40 3ad2ant1 WPreHilUSxBaseXyBaseXx𝑖WyBaseScalarXx𝑖WyBaseScalarW
42 37 41 mpbird WPreHilUSxBaseXyBaseXx𝑖WyBaseScalarX
43 eqid 𝑖X=𝑖X
44 1 34 43 ssipeq US𝑖X=𝑖W
45 44 oveqd USx𝑖Xy=x𝑖Wy
46 45 eleq1d USx𝑖XyBaseScalarXx𝑖WyBaseScalarX
47 46 adantl WPreHilUSx𝑖XyBaseScalarXx𝑖WyBaseScalarX
48 47 3ad2ant1 WPreHilUSxBaseXyBaseXx𝑖XyBaseScalarXx𝑖WyBaseScalarX
49 42 48 mpbird WPreHilUSxBaseXyBaseXx𝑖XyBaseScalarX
50 29 3ad2ant1 WPreHilUSqBaseScalarXxBaseXyBaseXzBaseXWPreHil
51 7 adantr WPreHilUSWLMod
52 51 3ad2ant1 WPreHilUSqBaseScalarXxBaseXyBaseXzBaseXWLMod
53 25 fveq2d WPreHilUSBaseScalarX=BaseScalarW
54 53 eleq2d WPreHilUSqBaseScalarXqBaseScalarW
55 54 biimpa WPreHilUSqBaseScalarXqBaseScalarW
56 55 3adant3 WPreHilUSqBaseScalarXxBaseXyBaseXzBaseXqBaseScalarW
57 32 3ad2ant1 xBaseXyBaseXzBaseXxBaseW
58 57 3ad2ant3 WPreHilUSqBaseScalarXxBaseXyBaseXzBaseXxBaseW
59 eqid W=W
60 30 22 59 35 lmodvscl WLModqBaseScalarWxBaseWqWxBaseW
61 52 56 58 60 syl3anc WPreHilUSqBaseScalarXxBaseXyBaseXzBaseXqWxBaseW
62 33 3ad2ant2 xBaseXyBaseXzBaseXyBaseW
63 62 3ad2ant3 WPreHilUSqBaseScalarXxBaseXyBaseXzBaseXyBaseW
64 31 sseli zBaseXzBaseW
65 64 3ad2ant3 xBaseXyBaseXzBaseXzBaseW
66 65 3ad2ant3 WPreHilUSqBaseScalarXxBaseXyBaseXzBaseXzBaseW
67 eqid +W=+W
68 eqid +ScalarW=+ScalarW
69 22 34 30 67 68 ipdir WPreHilqWxBaseWyBaseWzBaseWqWx+Wy𝑖Wz=qWx𝑖Wz+ScalarWy𝑖Wz
70 50 61 63 66 69 syl13anc WPreHilUSqBaseScalarXxBaseXyBaseXzBaseXqWx+Wy𝑖Wz=qWx𝑖Wz+ScalarWy𝑖Wz
71 eqid ScalarW=ScalarW
72 22 34 30 35 59 71 ipass WPreHilqBaseScalarWxBaseWzBaseWqWx𝑖Wz=qScalarWx𝑖Wz
73 50 56 58 66 72 syl13anc WPreHilUSqBaseScalarXxBaseXyBaseXzBaseXqWx𝑖Wz=qScalarWx𝑖Wz
74 73 oveq1d WPreHilUSqBaseScalarXxBaseXyBaseXzBaseXqWx𝑖Wz+ScalarWy𝑖Wz=qScalarWx𝑖Wz+ScalarWy𝑖Wz
75 70 74 eqtrd WPreHilUSqBaseScalarXxBaseXyBaseXzBaseXqWx+Wy𝑖Wz=qScalarWx𝑖Wz+ScalarWy𝑖Wz
76 1 67 ressplusg US+W=+X
77 76 eqcomd US+X=+W
78 1 59 ressvsca USW=X
79 78 eqcomd USX=W
80 79 oveqd USqXx=qWx
81 eqidd USy=y
82 77 80 81 oveq123d USqXx+Xy=qWx+Wy
83 eqidd USz=z
84 44 82 83 oveq123d USqXx+Xy𝑖Xz=qWx+Wy𝑖Wz
85 24 fveq2d US+ScalarX=+ScalarW
86 24 fveq2d USScalarX=ScalarW
87 eqidd USq=q
88 44 oveqd USx𝑖Xz=x𝑖Wz
89 86 87 88 oveq123d USqScalarXx𝑖Xz=qScalarWx𝑖Wz
90 44 oveqd USy𝑖Xz=y𝑖Wz
91 85 89 90 oveq123d USqScalarXx𝑖Xz+ScalarXy𝑖Xz=qScalarWx𝑖Wz+ScalarWy𝑖Wz
92 84 91 eqeq12d USqXx+Xy𝑖Xz=qScalarXx𝑖Xz+ScalarXy𝑖XzqWx+Wy𝑖Wz=qScalarWx𝑖Wz+ScalarWy𝑖Wz
93 92 adantl WPreHilUSqXx+Xy𝑖Xz=qScalarXx𝑖Xz+ScalarXy𝑖XzqWx+Wy𝑖Wz=qScalarWx𝑖Wz+ScalarWy𝑖Wz
94 93 3ad2ant1 WPreHilUSqBaseScalarXxBaseXyBaseXzBaseXqXx+Xy𝑖Xz=qScalarXx𝑖Xz+ScalarXy𝑖XzqWx+Wy𝑖Wz=qScalarWx𝑖Wz+ScalarWy𝑖Wz
95 75 94 mpbird WPreHilUSqBaseScalarXxBaseXyBaseXzBaseXqXx+Xy𝑖Xz=qScalarXx𝑖Xz+ScalarXy𝑖Xz
96 44 adantl WPreHilUS𝑖X=𝑖W
97 96 oveqdr WPreHilUSxBaseXx𝑖Xx=x𝑖Wx
98 24 fveq2d US0ScalarX=0ScalarW
99 98 adantl WPreHilUS0ScalarX=0ScalarW
100 99 adantr WPreHilUSxBaseX0ScalarX=0ScalarW
101 97 100 eqeq12d WPreHilUSxBaseXx𝑖Xx=0ScalarXx𝑖Wx=0ScalarW
102 eqid 0ScalarW=0ScalarW
103 22 34 30 102 8 ipeq0 WPreHilxBaseWx𝑖Wx=0ScalarWx=0W
104 29 32 103 syl2an WPreHilUSxBaseXx𝑖Wx=0ScalarWx=0W
105 104 biimpd WPreHilUSxBaseXx𝑖Wx=0ScalarWx=0W
106 101 105 sylbid WPreHilUSxBaseXx𝑖Xx=0ScalarXx=0W
107 106 3impia WPreHilUSxBaseXx𝑖Xx=0ScalarXx=0W
108 24 fveq2d US*ScalarX=*ScalarW
109 108 fveq1d USx𝑖Wy*ScalarX=x𝑖Wy*ScalarW
110 109 adantl WPreHilUSx𝑖Wy*ScalarX=x𝑖Wy*ScalarW
111 110 3ad2ant1 WPreHilUSxBaseXyBaseXx𝑖Wy*ScalarX=x𝑖Wy*ScalarW
112 eqid *ScalarW=*ScalarW
113 22 34 30 112 ipcj WPreHilxBaseWyBaseWx𝑖Wy*ScalarW=y𝑖Wx
114 29 32 33 113 syl3an WPreHilUSxBaseXyBaseXx𝑖Wy*ScalarW=y𝑖Wx
115 111 114 eqtrd WPreHilUSxBaseXyBaseXx𝑖Wy*ScalarX=y𝑖Wx
116 45 fveq2d USx𝑖Xy*ScalarX=x𝑖Wy*ScalarX
117 44 oveqd USy𝑖Xx=y𝑖Wx
118 116 117 eqeq12d USx𝑖Xy*ScalarX=y𝑖Xxx𝑖Wy*ScalarX=y𝑖Wx
119 118 adantl WPreHilUSx𝑖Xy*ScalarX=y𝑖Xxx𝑖Wy*ScalarX=y𝑖Wx
120 119 3ad2ant1 WPreHilUSxBaseXyBaseXx𝑖Xy*ScalarX=y𝑖Xxx𝑖Wy*ScalarX=y𝑖Wx
121 115 120 mpbird WPreHilUSxBaseXyBaseXx𝑖Xy*ScalarX=y𝑖Xx
122 3 4 5 6 12 13 14 15 16 17 18 21 28 49 95 107 121 isphld WPreHilUSXPreHil