Metamath Proof Explorer


Theorem phlssphl

Description: A subspace of an inner product space (pre-Hilbert space) is an inner product space. (Contributed by AV, 25-Sep-2022)

Ref Expression
Hypotheses phlssphl.x 𝑋 = ( 𝑊s 𝑈 )
phlssphl.s 𝑆 = ( LSubSp ‘ 𝑊 )
Assertion phlssphl ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → 𝑋 ∈ PreHil )

Proof

Step Hyp Ref Expression
1 phlssphl.x 𝑋 = ( 𝑊s 𝑈 )
2 phlssphl.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 eqidd ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) )
4 eqidd ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( +g𝑋 ) = ( +g𝑋 ) )
5 eqidd ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( ·𝑠𝑋 ) = ( ·𝑠𝑋 ) )
6 eqidd ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( ·𝑖𝑋 ) = ( ·𝑖𝑋 ) )
7 phllmod ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod )
8 eqid ( 0g𝑊 ) = ( 0g𝑊 )
9 eqid ( 0g𝑋 ) = ( 0g𝑋 )
10 1 8 9 2 lss0v ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → ( 0g𝑋 ) = ( 0g𝑊 ) )
11 7 10 sylan ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( 0g𝑋 ) = ( 0g𝑊 ) )
12 11 eqcomd ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( 0g𝑊 ) = ( 0g𝑋 ) )
13 eqidd ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) )
14 eqidd ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) )
15 eqidd ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( +g ‘ ( Scalar ‘ 𝑋 ) ) = ( +g ‘ ( Scalar ‘ 𝑋 ) ) )
16 eqidd ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( .r ‘ ( Scalar ‘ 𝑋 ) ) = ( .r ‘ ( Scalar ‘ 𝑋 ) ) )
17 eqidd ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) )
18 eqidd ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( 0g ‘ ( Scalar ‘ 𝑋 ) ) = ( 0g ‘ ( Scalar ‘ 𝑋 ) ) )
19 phllvec ( 𝑊 ∈ PreHil → 𝑊 ∈ LVec )
20 1 2 lsslvec ( ( 𝑊 ∈ LVec ∧ 𝑈𝑆 ) → 𝑋 ∈ LVec )
21 19 20 sylan ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → 𝑋 ∈ LVec )
22 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
23 1 22 resssca ( 𝑈𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) )
24 23 eqcomd ( 𝑈𝑆 → ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑊 ) )
25 24 adantl ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑊 ) )
26 22 phlsrng ( 𝑊 ∈ PreHil → ( Scalar ‘ 𝑊 ) ∈ *-Ring )
27 26 adantr ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( Scalar ‘ 𝑊 ) ∈ *-Ring )
28 25 27 eqeltrd ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( Scalar ‘ 𝑋 ) ∈ *-Ring )
29 simpl ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → 𝑊 ∈ PreHil )
30 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
31 1 30 ressbasss ( Base ‘ 𝑋 ) ⊆ ( Base ‘ 𝑊 )
32 31 sseli ( 𝑥 ∈ ( Base ‘ 𝑋 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) )
33 31 sseli ( 𝑦 ∈ ( Base ‘ 𝑋 ) → 𝑦 ∈ ( Base ‘ 𝑊 ) )
34 eqid ( ·𝑖𝑊 ) = ( ·𝑖𝑊 )
35 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
36 22 34 30 35 ipcl ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
37 29 32 33 36 syl3an ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
38 24 fveq2d ( 𝑈𝑆 → ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
39 38 eleq2d ( 𝑈𝑆 → ( ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
40 39 adantl ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
41 40 3ad2ant1 ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
42 37 41 mpbird ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) )
43 eqid ( ·𝑖𝑋 ) = ( ·𝑖𝑋 )
44 1 34 43 ssipeq ( 𝑈𝑆 → ( ·𝑖𝑋 ) = ( ·𝑖𝑊 ) )
45 44 oveqd ( 𝑈𝑆 → ( 𝑥 ( ·𝑖𝑋 ) 𝑦 ) = ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) )
46 45 eleq1d ( 𝑈𝑆 → ( ( 𝑥 ( ·𝑖𝑋 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) )
47 46 adantl ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( ( 𝑥 ( ·𝑖𝑋 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) )
48 47 3ad2ant1 ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖𝑋 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) )
49 42 48 mpbird ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( 𝑥 ( ·𝑖𝑋 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) )
50 29 3ad2ant1 ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑊 ∈ PreHil )
51 7 adantr ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → 𝑊 ∈ LMod )
52 51 3ad2ant1 ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑊 ∈ LMod )
53 25 fveq2d ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
54 53 eleq2d ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
55 54 biimpa ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) → 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
56 55 3adant3 ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
57 32 3ad2ant1 ( ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) )
58 57 3ad2ant3 ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) )
59 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
60 30 22 59 35 lmodvscl ( ( 𝑊 ∈ LMod ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ∈ ( Base ‘ 𝑊 ) )
61 52 56 58 60 syl3anc ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ∈ ( Base ‘ 𝑊 ) )
62 33 3ad2ant2 ( ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) )
63 62 3ad2ant3 ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) )
64 31 sseli ( 𝑧 ∈ ( Base ‘ 𝑋 ) → 𝑧 ∈ ( Base ‘ 𝑊 ) )
65 64 3ad2ant3 ( ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) )
66 65 3ad2ant3 ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) )
67 eqid ( +g𝑊 ) = ( +g𝑊 )
68 eqid ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) )
69 22 34 30 67 68 ipdir ( ( 𝑊 ∈ PreHil ∧ ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ( ·𝑖𝑊 ) 𝑧 ) = ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( ·𝑖𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) ) )
70 50 61 63 66 69 syl13anc ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ( ·𝑖𝑊 ) 𝑧 ) = ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( ·𝑖𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) ) )
71 eqid ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) )
72 22 34 30 35 59 71 ipass ( ( 𝑊 ∈ PreHil ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( ·𝑖𝑊 ) 𝑧 ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) )
73 50 56 58 66 72 syl13anc ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( ·𝑖𝑊 ) 𝑧 ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) )
74 73 oveq1d ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( ·𝑖𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) ) )
75 70 74 eqtrd ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ( ·𝑖𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) ) )
76 1 67 ressplusg ( 𝑈𝑆 → ( +g𝑊 ) = ( +g𝑋 ) )
77 76 eqcomd ( 𝑈𝑆 → ( +g𝑋 ) = ( +g𝑊 ) )
78 1 59 ressvsca ( 𝑈𝑆 → ( ·𝑠𝑊 ) = ( ·𝑠𝑋 ) )
79 78 eqcomd ( 𝑈𝑆 → ( ·𝑠𝑋 ) = ( ·𝑠𝑊 ) )
80 79 oveqd ( 𝑈𝑆 → ( 𝑞 ( ·𝑠𝑋 ) 𝑥 ) = ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) )
81 eqidd ( 𝑈𝑆𝑦 = 𝑦 )
82 77 80 81 oveq123d ( 𝑈𝑆 → ( ( 𝑞 ( ·𝑠𝑋 ) 𝑥 ) ( +g𝑋 ) 𝑦 ) = ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) )
83 eqidd ( 𝑈𝑆𝑧 = 𝑧 )
84 44 82 83 oveq123d ( 𝑈𝑆 → ( ( ( 𝑞 ( ·𝑠𝑋 ) 𝑥 ) ( +g𝑋 ) 𝑦 ) ( ·𝑖𝑋 ) 𝑧 ) = ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ( ·𝑖𝑊 ) 𝑧 ) )
85 24 fveq2d ( 𝑈𝑆 → ( +g ‘ ( Scalar ‘ 𝑋 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) )
86 24 fveq2d ( 𝑈𝑆 → ( .r ‘ ( Scalar ‘ 𝑋 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) )
87 eqidd ( 𝑈𝑆𝑞 = 𝑞 )
88 44 oveqd ( 𝑈𝑆 → ( 𝑥 ( ·𝑖𝑋 ) 𝑧 ) = ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) )
89 86 87 88 oveq123d ( 𝑈𝑆 → ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖𝑋 ) 𝑧 ) ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) )
90 44 oveqd ( 𝑈𝑆 → ( 𝑦 ( ·𝑖𝑋 ) 𝑧 ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) )
91 85 89 90 oveq123d ( 𝑈𝑆 → ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖𝑋 ) 𝑧 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) ) )
92 84 91 eqeq12d ( 𝑈𝑆 → ( ( ( ( 𝑞 ( ·𝑠𝑋 ) 𝑥 ) ( +g𝑋 ) 𝑦 ) ( ·𝑖𝑋 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖𝑋 ) 𝑧 ) ) ↔ ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ( ·𝑖𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) ) ) )
93 92 adantl ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( ( ( ( 𝑞 ( ·𝑠𝑋 ) 𝑥 ) ( +g𝑋 ) 𝑦 ) ( ·𝑖𝑋 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖𝑋 ) 𝑧 ) ) ↔ ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ( ·𝑖𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) ) ) )
94 93 3ad2ant1 ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( ( 𝑞 ( ·𝑠𝑋 ) 𝑥 ) ( +g𝑋 ) 𝑦 ) ( ·𝑖𝑋 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖𝑋 ) 𝑧 ) ) ↔ ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ( ·𝑖𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) ) ) )
95 75 94 mpbird ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( 𝑞 ( ·𝑠𝑋 ) 𝑥 ) ( +g𝑋 ) 𝑦 ) ( ·𝑖𝑋 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖𝑋 ) 𝑧 ) ) )
96 44 adantl ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( ·𝑖𝑋 ) = ( ·𝑖𝑊 ) )
97 96 oveqdr ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( 𝑥 ( ·𝑖𝑋 ) 𝑥 ) = ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) )
98 24 fveq2d ( 𝑈𝑆 → ( 0g ‘ ( Scalar ‘ 𝑋 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
99 98 adantl ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( 0g ‘ ( Scalar ‘ 𝑋 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
100 99 adantr ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( 0g ‘ ( Scalar ‘ 𝑋 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
101 97 100 eqeq12d ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖𝑋 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) )
102 eqid ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) )
103 22 34 30 102 8 ipeq0 ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 = ( 0g𝑊 ) ) )
104 29 32 103 syl2an ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 = ( 0g𝑊 ) ) )
105 104 biimpd ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g𝑊 ) ) )
106 101 105 sylbid ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖𝑋 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑋 ) ) → 𝑥 = ( 0g𝑊 ) ) )
107 106 3impia ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ ( 𝑥 ( ·𝑖𝑋 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑋 ) ) ) → 𝑥 = ( 0g𝑊 ) )
108 24 fveq2d ( 𝑈𝑆 → ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) )
109 108 fveq1d ( 𝑈𝑆 → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) )
110 109 adantl ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) )
111 110 3ad2ant1 ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) )
112 eqid ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) )
113 22 34 30 112 ipcj ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) )
114 29 32 33 113 syl3an ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) )
115 111 114 eqtrd ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) )
116 45 fveq2d ( 𝑈𝑆 → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖𝑋 ) 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) )
117 44 oveqd ( 𝑈𝑆 → ( 𝑦 ( ·𝑖𝑋 ) 𝑥 ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) )
118 116 117 eqeq12d ( 𝑈𝑆 → ( ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖𝑋 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖𝑋 ) 𝑥 ) ↔ ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) ) )
119 118 adantl ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → ( ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖𝑋 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖𝑋 ) 𝑥 ) ↔ ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) ) )
120 119 3ad2ant1 ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖𝑋 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖𝑋 ) 𝑥 ) ↔ ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) ) )
121 115 120 mpbird ( ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖𝑋 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖𝑋 ) 𝑥 ) )
122 3 4 5 6 12 13 14 15 16 17 18 21 28 49 95 107 121 isphld ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → 𝑋 ∈ PreHil )