| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phlssphl.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
| 2 |
|
phlssphl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |
| 4 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( +g ‘ 𝑋 ) = ( +g ‘ 𝑋 ) ) |
| 5 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ·𝑠 ‘ 𝑋 ) = ( ·𝑠 ‘ 𝑋 ) ) |
| 6 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ·𝑖 ‘ 𝑋 ) = ( ·𝑖 ‘ 𝑋 ) ) |
| 7 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
| 8 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 9 |
|
eqid |
⊢ ( 0g ‘ 𝑋 ) = ( 0g ‘ 𝑋 ) |
| 10 |
1 8 9 2
|
lss0v |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 0g ‘ 𝑋 ) = ( 0g ‘ 𝑊 ) ) |
| 11 |
7 10
|
sylan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 0g ‘ 𝑋 ) = ( 0g ‘ 𝑊 ) ) |
| 12 |
11
|
eqcomd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑋 ) ) |
| 13 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) ) |
| 14 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) |
| 15 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( +g ‘ ( Scalar ‘ 𝑋 ) ) = ( +g ‘ ( Scalar ‘ 𝑋 ) ) ) |
| 16 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( .r ‘ ( Scalar ‘ 𝑋 ) ) = ( .r ‘ ( Scalar ‘ 𝑋 ) ) ) |
| 17 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ) |
| 18 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 0g ‘ ( Scalar ‘ 𝑋 ) ) = ( 0g ‘ ( Scalar ‘ 𝑋 ) ) ) |
| 19 |
|
phllvec |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LVec ) |
| 20 |
1 2
|
lsslvec |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LVec ) |
| 21 |
19 20
|
sylan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LVec ) |
| 22 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 23 |
1 22
|
resssca |
⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 24 |
23
|
eqcomd |
⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑊 ) ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑊 ) ) |
| 26 |
22
|
phlsrng |
⊢ ( 𝑊 ∈ PreHil → ( Scalar ‘ 𝑊 ) ∈ *-Ring ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) ∈ *-Ring ) |
| 28 |
25 27
|
eqeltrd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) ∈ *-Ring ) |
| 29 |
|
simpl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ PreHil ) |
| 30 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 31 |
1 30
|
ressbasss |
⊢ ( Base ‘ 𝑋 ) ⊆ ( Base ‘ 𝑊 ) |
| 32 |
31
|
sseli |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑋 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 33 |
31
|
sseli |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑋 ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 34 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
| 35 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 36 |
22 34 30 35
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 37 |
29 32 33 36
|
syl3an |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 38 |
24
|
fveq2d |
⊢ ( 𝑈 ∈ 𝑆 → ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 39 |
38
|
eleq2d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 40 |
39
|
adantl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 41 |
40
|
3ad2ant1 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 42 |
37 41
|
mpbird |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) |
| 43 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑋 ) = ( ·𝑖 ‘ 𝑋 ) |
| 44 |
1 34 43
|
ssipeq |
⊢ ( 𝑈 ∈ 𝑆 → ( ·𝑖 ‘ 𝑋 ) = ( ·𝑖 ‘ 𝑊 ) ) |
| 45 |
44
|
oveqd |
⊢ ( 𝑈 ∈ 𝑆 → ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
| 46 |
45
|
eleq1d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) |
| 47 |
46
|
adantl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) |
| 48 |
47
|
3ad2ant1 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) |
| 49 |
42 48
|
mpbird |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) |
| 50 |
29
|
3ad2ant1 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑊 ∈ PreHil ) |
| 51 |
7
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ LMod ) |
| 52 |
51
|
3ad2ant1 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑊 ∈ LMod ) |
| 53 |
25
|
fveq2d |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 54 |
53
|
eleq2d |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 55 |
54
|
biimpa |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) → 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 56 |
55
|
3adant3 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 57 |
32
|
3ad2ant1 |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 58 |
57
|
3ad2ant3 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 59 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 60 |
30 22 59 35
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( Base ‘ 𝑊 ) ) |
| 61 |
52 56 58 60
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( Base ‘ 𝑊 ) ) |
| 62 |
33
|
3ad2ant2 |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 63 |
62
|
3ad2ant3 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 64 |
31
|
sseli |
⊢ ( 𝑧 ∈ ( Base ‘ 𝑋 ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) |
| 65 |
64
|
3ad2ant3 |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) |
| 66 |
65
|
3ad2ant3 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) |
| 67 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 68 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) |
| 69 |
22 34 30 67 68
|
ipdir |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 70 |
50 61 63 66 69
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 71 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) |
| 72 |
22 34 30 35 59 71
|
ipass |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 73 |
50 56 58 66 72
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 74 |
73
|
oveq1d |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 75 |
70 74
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 76 |
1 67
|
ressplusg |
⊢ ( 𝑈 ∈ 𝑆 → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑋 ) ) |
| 77 |
76
|
eqcomd |
⊢ ( 𝑈 ∈ 𝑆 → ( +g ‘ 𝑋 ) = ( +g ‘ 𝑊 ) ) |
| 78 |
1 59
|
ressvsca |
⊢ ( 𝑈 ∈ 𝑆 → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑋 ) ) |
| 79 |
78
|
eqcomd |
⊢ ( 𝑈 ∈ 𝑆 → ( ·𝑠 ‘ 𝑋 ) = ( ·𝑠 ‘ 𝑊 ) ) |
| 80 |
79
|
oveqd |
⊢ ( 𝑈 ∈ 𝑆 → ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) = ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ) |
| 81 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝑆 → 𝑦 = 𝑦 ) |
| 82 |
77 80 81
|
oveq123d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) |
| 83 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝑆 → 𝑧 = 𝑧 ) |
| 84 |
44 82 83
|
oveq123d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 85 |
24
|
fveq2d |
⊢ ( 𝑈 ∈ 𝑆 → ( +g ‘ ( Scalar ‘ 𝑋 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 86 |
24
|
fveq2d |
⊢ ( 𝑈 ∈ 𝑆 → ( .r ‘ ( Scalar ‘ 𝑋 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 87 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝑆 → 𝑞 = 𝑞 ) |
| 88 |
44
|
oveqd |
⊢ ( 𝑈 ∈ 𝑆 → ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 89 |
86 87 88
|
oveq123d |
⊢ ( 𝑈 ∈ 𝑆 → ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 90 |
44
|
oveqd |
⊢ ( 𝑈 ∈ 𝑆 → ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 91 |
85 89 90
|
oveq123d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 92 |
84 91
|
eqeq12d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( ( ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ↔ ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 93 |
92
|
adantl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( ( ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ↔ ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 94 |
93
|
3ad2ant1 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ↔ ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 95 |
75 94
|
mpbird |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ) |
| 96 |
44
|
adantl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ·𝑖 ‘ 𝑋 ) = ( ·𝑖 ‘ 𝑊 ) ) |
| 97 |
96
|
oveqdr |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 98 |
24
|
fveq2d |
⊢ ( 𝑈 ∈ 𝑆 → ( 0g ‘ ( Scalar ‘ 𝑋 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 99 |
98
|
adantl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 0g ‘ ( Scalar ‘ 𝑋 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 100 |
99
|
adantr |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( 0g ‘ ( Scalar ‘ 𝑋 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 101 |
97 100
|
eqeq12d |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 102 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 103 |
22 34 30 102 8
|
ipeq0 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
| 104 |
29 32 103
|
syl2an |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
| 105 |
104
|
biimpd |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
| 106 |
101 105
|
sylbid |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑋 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
| 107 |
106
|
3impia |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑋 ) ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) |
| 108 |
24
|
fveq2d |
⊢ ( 𝑈 ∈ 𝑆 → ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 109 |
108
|
fveq1d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) |
| 110 |
109
|
adantl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) |
| 111 |
110
|
3ad2ant1 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) |
| 112 |
|
eqid |
⊢ ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) |
| 113 |
22 34 30 112
|
ipcj |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 114 |
29 32 33 113
|
syl3an |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 115 |
111 114
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 116 |
45
|
fveq2d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) |
| 117 |
44
|
oveqd |
⊢ ( 𝑈 ∈ 𝑆 → ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 118 |
116 117
|
eqeq12d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) ↔ ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 119 |
118
|
adantl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) ↔ ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 120 |
119
|
3ad2ant1 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) ↔ ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 121 |
115 120
|
mpbird |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) ) |
| 122 |
3 4 5 6 12 13 14 15 16 17 18 21 28 49 95 107 121
|
isphld |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ PreHil ) |