| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isphld.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑊 ) ) |
| 2 |
|
isphld.a |
⊢ ( 𝜑 → + = ( +g ‘ 𝑊 ) ) |
| 3 |
|
isphld.s |
⊢ ( 𝜑 → · = ( ·𝑠 ‘ 𝑊 ) ) |
| 4 |
|
isphld.i |
⊢ ( 𝜑 → 𝐼 = ( ·𝑖 ‘ 𝑊 ) ) |
| 5 |
|
isphld.z |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑊 ) ) |
| 6 |
|
isphld.f |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝑊 ) ) |
| 7 |
|
isphld.k |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ 𝐹 ) ) |
| 8 |
|
isphld.p |
⊢ ( 𝜑 → ⨣ = ( +g ‘ 𝐹 ) ) |
| 9 |
|
isphld.t |
⊢ ( 𝜑 → × = ( .r ‘ 𝐹 ) ) |
| 10 |
|
isphld.c |
⊢ ( 𝜑 → ∗ = ( *𝑟 ‘ 𝐹 ) ) |
| 11 |
|
isphld.o |
⊢ ( 𝜑 → 𝑂 = ( 0g ‘ 𝐹 ) ) |
| 12 |
|
isphld.l |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 13 |
|
isphld.r |
⊢ ( 𝜑 → 𝐹 ∈ *-Ring ) |
| 14 |
|
isphld.cl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 𝐼 𝑦 ) ∈ 𝐾 ) |
| 15 |
|
isphld.d |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐾 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ⨣ ( 𝑦 𝐼 𝑧 ) ) ) |
| 16 |
|
isphld.ns |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝑥 𝐼 𝑥 ) = 𝑂 ) → 𝑥 = 0 ) |
| 17 |
|
isphld.cj |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ∗ ‘ ( 𝑥 𝐼 𝑦 ) ) = ( 𝑦 𝐼 𝑥 ) ) |
| 18 |
6 13
|
eqeltrrd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ *-Ring ) |
| 19 |
|
oveq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 20 |
19
|
cbvmptv |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) = ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 21 |
14
|
3expib |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 𝐼 𝑦 ) ∈ 𝐾 ) ) |
| 22 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 ↔ 𝑥 ∈ ( Base ‘ 𝑊 ) ) ) |
| 23 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑉 ↔ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) |
| 24 |
22 23
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ) |
| 25 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 𝐼 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
| 26 |
6
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 27 |
7 26
|
eqtrd |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 28 |
25 27
|
eleq12d |
⊢ ( 𝜑 → ( ( 𝑥 𝐼 𝑦 ) ∈ 𝐾 ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 29 |
21 24 28
|
3imtr3d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 30 |
29
|
impl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 31 |
30
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 32 |
|
oveq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
| 33 |
32
|
cbvmptv |
⊢ ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
| 34 |
31 33
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 35 |
34
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 36 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 37 |
36
|
mpteq2dv |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 38 |
37
|
feq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 39 |
38
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 40 |
35 39
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 41 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ) |
| 42 |
15
|
3exp |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝐾 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ⨣ ( 𝑦 𝐼 𝑧 ) ) ) ) ) |
| 43 |
27
|
eleq2d |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝐾 ↔ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 44 |
|
3anrot |
⊢ ( ( 𝑧 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) |
| 45 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑉 ↔ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) |
| 46 |
45 22 23
|
3anbi123d |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ) |
| 47 |
44 46
|
bitr3id |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ) |
| 48 |
3
|
oveqd |
⊢ ( 𝜑 → ( 𝑞 · 𝑥 ) = ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ) |
| 49 |
|
eqidd |
⊢ ( 𝜑 → 𝑦 = 𝑦 ) |
| 50 |
2 48 49
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝑞 · 𝑥 ) + 𝑦 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) |
| 51 |
|
eqidd |
⊢ ( 𝜑 → 𝑧 = 𝑧 ) |
| 52 |
4 50 51
|
oveq123d |
⊢ ( 𝜑 → ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 53 |
6
|
fveq2d |
⊢ ( 𝜑 → ( +g ‘ 𝐹 ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 54 |
8 53
|
eqtrd |
⊢ ( 𝜑 → ⨣ = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 55 |
6
|
fveq2d |
⊢ ( 𝜑 → ( .r ‘ 𝐹 ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 56 |
9 55
|
eqtrd |
⊢ ( 𝜑 → × = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 57 |
|
eqidd |
⊢ ( 𝜑 → 𝑞 = 𝑞 ) |
| 58 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 𝐼 𝑧 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 59 |
56 57 58
|
oveq123d |
⊢ ( 𝜑 → ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 60 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑦 𝐼 𝑧 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 61 |
54 59 60
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ⨣ ( 𝑦 𝐼 𝑧 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 62 |
52 61
|
eqeq12d |
⊢ ( 𝜑 → ( ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ⨣ ( 𝑦 𝐼 𝑧 ) ) ↔ ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 63 |
47 62
|
imbi12d |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ⨣ ( 𝑦 𝐼 𝑧 ) ) ) ↔ ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) ) |
| 64 |
42 43 63
|
3imtr3d |
⊢ ( 𝜑 → ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) ) |
| 65 |
64
|
imp31 |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 66 |
65
|
3exp2 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑧 ∈ ( Base ‘ 𝑊 ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) → ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) ) ) |
| 67 |
66
|
impancom |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) → ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) ) ) |
| 68 |
67
|
3imp2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 69 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 70 |
12 69
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → 𝑊 ∈ LMod ) |
| 72 |
71
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ LMod ) |
| 73 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 74 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 75 |
73 74
|
lss1 |
⊢ ( 𝑊 ∈ LMod → ( Base ‘ 𝑊 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 76 |
72 75
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( Base ‘ 𝑊 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 77 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 78 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 79 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 80 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 81 |
77 78 79 80 74
|
lsscl |
⊢ ( ( ( Base ‘ 𝑊 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 82 |
76 81
|
sylancom |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 83 |
|
oveq1 |
⊢ ( 𝑤 = ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) → ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 84 |
|
eqid |
⊢ ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) = ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 85 |
|
ovex |
⊢ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ∈ V |
| 86 |
83 84 85
|
fvmpt3i |
⊢ ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 87 |
82 86
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 88 |
|
simpr2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 89 |
|
oveq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 90 |
89 84 85
|
fvmpt3i |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 91 |
88 90
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 92 |
91
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 93 |
|
simpr3 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 94 |
|
oveq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 95 |
94 84 85
|
fvmpt3i |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 96 |
93 95
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 97 |
92 96
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 98 |
68 87 97
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) ) |
| 99 |
98
|
ralrimivvva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) ) |
| 100 |
77
|
lmodring |
⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
| 101 |
|
rlmlmod |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ Ring → ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ∈ LMod ) |
| 102 |
70 100 101
|
3syl |
⊢ ( 𝜑 → ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ∈ LMod ) |
| 103 |
102
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ∈ LMod ) |
| 104 |
|
rlmbas |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 105 |
|
fvex |
⊢ ( Scalar ‘ 𝑊 ) ∈ V |
| 106 |
|
rlmsca |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ V → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 107 |
105 106
|
ax-mp |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 108 |
|
rlmplusg |
⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 109 |
|
rlmvsca |
⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( ·𝑠 ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 110 |
73 104 77 107 78 79 108 80 109
|
islmhm2 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ∈ LMod ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ∧ ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) ) ) ) |
| 111 |
71 103 110
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ∧ ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) ) ) ) |
| 112 |
40 41 99 111
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 113 |
112
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 114 |
|
oveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 115 |
114
|
mpteq2dv |
⊢ ( 𝑧 = 𝑥 → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) = ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 116 |
115
|
eleq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
| 117 |
116
|
rspccva |
⊢ ( ( ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 118 |
113 117
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 119 |
20 118
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 120 |
16
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 → ( ( 𝑥 𝐼 𝑥 ) = 𝑂 → 𝑥 = 0 ) ) ) |
| 121 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 𝐼 𝑥 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 122 |
6
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝐹 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 123 |
11 122
|
eqtrd |
⊢ ( 𝜑 → 𝑂 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 124 |
121 123
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝑥 𝐼 𝑥 ) = 𝑂 ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 125 |
5
|
eqeq2d |
⊢ ( 𝜑 → ( 𝑥 = 0 ↔ 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
| 126 |
124 125
|
imbi12d |
⊢ ( 𝜑 → ( ( ( 𝑥 𝐼 𝑥 ) = 𝑂 → 𝑥 = 0 ) ↔ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ) ) |
| 127 |
120 22 126
|
3imtr3d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑊 ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ) ) |
| 128 |
127
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
| 129 |
17
|
3expib |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ∗ ‘ ( 𝑥 𝐼 𝑦 ) ) = ( 𝑦 𝐼 𝑥 ) ) ) |
| 130 |
6
|
fveq2d |
⊢ ( 𝜑 → ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 131 |
10 130
|
eqtrd |
⊢ ( 𝜑 → ∗ = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 132 |
131 25
|
fveq12d |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑥 𝐼 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) |
| 133 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑦 𝐼 𝑥 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 134 |
132 133
|
eqeq12d |
⊢ ( 𝜑 → ( ( ∗ ‘ ( 𝑥 𝐼 𝑦 ) ) = ( 𝑦 𝐼 𝑥 ) ↔ ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 135 |
129 24 134
|
3imtr3d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 136 |
135
|
expdimp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 137 |
136
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 138 |
119 128 137
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 139 |
138
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 140 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
| 141 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 142 |
|
eqid |
⊢ ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) |
| 143 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 144 |
73 77 140 141 142 143
|
isphl |
⊢ ( 𝑊 ∈ PreHil ↔ ( 𝑊 ∈ LVec ∧ ( Scalar ‘ 𝑊 ) ∈ *-Ring ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) |
| 145 |
12 18 139 144
|
syl3anbrc |
⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |