| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islmhm2.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 2 |
|
islmhm2.c |
⊢ 𝐶 = ( Base ‘ 𝑇 ) |
| 3 |
|
islmhm2.k |
⊢ 𝐾 = ( Scalar ‘ 𝑆 ) |
| 4 |
|
islmhm2.l |
⊢ 𝐿 = ( Scalar ‘ 𝑇 ) |
| 5 |
|
islmhm2.e |
⊢ 𝐸 = ( Base ‘ 𝐾 ) |
| 6 |
|
islmhm2.p |
⊢ + = ( +g ‘ 𝑆 ) |
| 7 |
|
islmhm2.q |
⊢ ⨣ = ( +g ‘ 𝑇 ) |
| 8 |
|
islmhm2.m |
⊢ · = ( ·𝑠 ‘ 𝑆 ) |
| 9 |
|
islmhm2.n |
⊢ × = ( ·𝑠 ‘ 𝑇 ) |
| 10 |
1 2
|
lmhmf |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 11 |
3 4
|
lmhmsca |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐿 = 𝐾 ) |
| 12 |
|
lmghm |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 14 |
|
lmhmlmod1 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑆 ∈ LMod ) |
| 16 |
|
simpr1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐸 ) |
| 17 |
|
simpr2 |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
| 18 |
1 3 8 5
|
lmodvscl |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
| 19 |
15 16 17 18
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
| 20 |
|
simpr3 |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
| 21 |
1 6 7
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑥 · 𝑦 ) ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) |
| 22 |
13 19 20 21
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) |
| 23 |
3 5 1 8 9
|
lmhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) |
| 24 |
23
|
3adant3r3 |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) |
| 25 |
24
|
oveq1d |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) |
| 26 |
22 25
|
eqtrd |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) |
| 27 |
26
|
ralrimivvva |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) |
| 28 |
10 11 27
|
3jca |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 29 |
28
|
adantl |
⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 30 |
|
lmodgrp |
⊢ ( 𝑆 ∈ LMod → 𝑆 ∈ Grp ) |
| 31 |
|
lmodgrp |
⊢ ( 𝑇 ∈ LMod → 𝑇 ∈ Grp ) |
| 32 |
30 31
|
anim12i |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ) |
| 33 |
32
|
adantr |
⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ) |
| 34 |
|
simpr1 |
⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 35 |
3
|
lmodring |
⊢ ( 𝑆 ∈ LMod → 𝐾 ∈ Ring ) |
| 36 |
35
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) → 𝐾 ∈ Ring ) |
| 37 |
|
eqid |
⊢ ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐾 ) |
| 38 |
5 37
|
ringidcl |
⊢ ( 𝐾 ∈ Ring → ( 1r ‘ 𝐾 ) ∈ 𝐸 ) |
| 39 |
|
oveq1 |
⊢ ( 𝑥 = ( 1r ‘ 𝐾 ) → ( 𝑥 · 𝑦 ) = ( ( 1r ‘ 𝐾 ) · 𝑦 ) ) |
| 40 |
39
|
fvoveq1d |
⊢ ( 𝑥 = ( 1r ‘ 𝐾 ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 ) · 𝑦 ) + 𝑧 ) ) ) |
| 41 |
|
oveq1 |
⊢ ( 𝑥 = ( 1r ‘ 𝐾 ) → ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) = ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ) |
| 42 |
41
|
oveq1d |
⊢ ( 𝑥 = ( 1r ‘ 𝐾 ) → ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) = ( ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) |
| 43 |
40 42
|
eqeq12d |
⊢ ( 𝑥 = ( 1r ‘ 𝐾 ) → ( ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ↔ ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 ) · 𝑦 ) + 𝑧 ) ) = ( ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 44 |
43
|
2ralbidv |
⊢ ( 𝑥 = ( 1r ‘ 𝐾 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 ) · 𝑦 ) + 𝑧 ) ) = ( ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 45 |
44
|
rspcv |
⊢ ( ( 1r ‘ 𝐾 ) ∈ 𝐸 → ( ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 ) · 𝑦 ) + 𝑧 ) ) = ( ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 46 |
36 38 45
|
3syl |
⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) → ( ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 ) · 𝑦 ) + 𝑧 ) ) = ( ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 47 |
|
simplll |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑆 ∈ LMod ) |
| 48 |
|
simprl |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
| 49 |
1 3 8 37
|
lmodvs1 |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑦 ∈ 𝐵 ) → ( ( 1r ‘ 𝐾 ) · 𝑦 ) = 𝑦 ) |
| 50 |
47 48 49
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 1r ‘ 𝐾 ) · 𝑦 ) = 𝑦 ) |
| 51 |
50
|
fvoveq1d |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 ) · 𝑦 ) + 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) |
| 52 |
|
simplrr |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐿 = 𝐾 ) |
| 53 |
52
|
fveq2d |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐾 ) ) |
| 54 |
53
|
oveq1d |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 1r ‘ 𝐿 ) × ( 𝐹 ‘ 𝑦 ) ) = ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ) |
| 55 |
|
simpllr |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑇 ∈ LMod ) |
| 56 |
|
simplrl |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 57 |
56 48
|
ffvelcdmd |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) |
| 58 |
|
eqid |
⊢ ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐿 ) |
| 59 |
2 4 9 58
|
lmodvs1 |
⊢ ( ( 𝑇 ∈ LMod ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) → ( ( 1r ‘ 𝐿 ) × ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 60 |
55 57 59
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 1r ‘ 𝐿 ) × ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 61 |
54 60
|
eqtr3d |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 62 |
61
|
oveq1d |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) |
| 63 |
51 62
|
eqeq12d |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 ) · 𝑦 ) + 𝑧 ) ) = ( ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ↔ ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 64 |
63
|
2ralbidva |
⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 ) · 𝑦 ) + 𝑧 ) ) = ( ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 65 |
46 64
|
sylibd |
⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) → ( ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 66 |
65
|
exp32 |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝐹 : 𝐵 ⟶ 𝐶 → ( 𝐿 = 𝐾 → ( ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) ) ) |
| 67 |
66
|
3imp2 |
⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) |
| 68 |
34 67
|
jca |
⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 69 |
1 2 6 7
|
isghm |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 70 |
33 68 69
|
sylanbrc |
⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 71 |
|
simpr2 |
⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → 𝐿 = 𝐾 ) |
| 72 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 73 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
| 74 |
72 73
|
ghmid |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 75 |
70 74
|
syl |
⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 76 |
30
|
ad3antrrr |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑆 ∈ Grp ) |
| 77 |
1 72
|
grpidcl |
⊢ ( 𝑆 ∈ Grp → ( 0g ‘ 𝑆 ) ∈ 𝐵 ) |
| 78 |
|
oveq2 |
⊢ ( 𝑧 = ( 0g ‘ 𝑆 ) → ( ( 𝑥 · 𝑦 ) + 𝑧 ) = ( ( 𝑥 · 𝑦 ) + ( 0g ‘ 𝑆 ) ) ) |
| 79 |
78
|
fveq2d |
⊢ ( 𝑧 = ( 0g ‘ 𝑆 ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 0g ‘ 𝑆 ) ) ) ) |
| 80 |
|
fveq2 |
⊢ ( 𝑧 = ( 0g ‘ 𝑆 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) |
| 81 |
80
|
oveq2d |
⊢ ( 𝑧 = ( 0g ‘ 𝑆 ) → ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ) |
| 82 |
79 81
|
eqeq12d |
⊢ ( 𝑧 = ( 0g ‘ 𝑆 ) → ( ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ↔ ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 0g ‘ 𝑆 ) ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ) ) |
| 83 |
82
|
rspcv |
⊢ ( ( 0g ‘ 𝑆 ) ∈ 𝐵 → ( ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 0g ‘ 𝑆 ) ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ) ) |
| 84 |
76 77 83
|
3syl |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 0g ‘ 𝑆 ) ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ) ) |
| 85 |
|
simplll |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑆 ∈ LMod ) |
| 86 |
|
simprl |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐸 ) |
| 87 |
|
simprr |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
| 88 |
85 86 87 18
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
| 89 |
1 6 72
|
grprid |
⊢ ( ( 𝑆 ∈ Grp ∧ ( 𝑥 · 𝑦 ) ∈ 𝐵 ) → ( ( 𝑥 · 𝑦 ) + ( 0g ‘ 𝑆 ) ) = ( 𝑥 · 𝑦 ) ) |
| 90 |
76 88 89
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 · 𝑦 ) + ( 0g ‘ 𝑆 ) ) = ( 𝑥 · 𝑦 ) ) |
| 91 |
90
|
fveq2d |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 0g ‘ 𝑆 ) ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ) |
| 92 |
|
simplr3 |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 93 |
92
|
oveq2d |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 0g ‘ 𝑇 ) ) ) |
| 94 |
|
simpllr |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑇 ∈ LMod ) |
| 95 |
94 31
|
syl |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑇 ∈ Grp ) |
| 96 |
|
simplr2 |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐿 = 𝐾 ) |
| 97 |
96
|
fveq2d |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( Base ‘ 𝐿 ) = ( Base ‘ 𝐾 ) ) |
| 98 |
97 5
|
eqtr4di |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( Base ‘ 𝐿 ) = 𝐸 ) |
| 99 |
86 98
|
eleqtrrd |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ ( Base ‘ 𝐿 ) ) |
| 100 |
|
simplr1 |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 101 |
100 87
|
ffvelcdmd |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) |
| 102 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 103 |
2 4 9 102
|
lmodvscl |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) → ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ∈ 𝐶 ) |
| 104 |
94 99 101 103
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ∈ 𝐶 ) |
| 105 |
2 7 73
|
grprid |
⊢ ( ( 𝑇 ∈ Grp ∧ ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ∈ 𝐶 ) → ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 0g ‘ 𝑇 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) |
| 106 |
95 104 105
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 0g ‘ 𝑇 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) |
| 107 |
93 106
|
eqtrd |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) |
| 108 |
91 107
|
eqeq12d |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 0g ‘ 𝑆 ) ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ↔ ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 109 |
84 108
|
sylibd |
⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 110 |
109
|
ralimdvva |
⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) → ( ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 111 |
110
|
3exp2 |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝐹 : 𝐵 ⟶ 𝐶 → ( 𝐿 = 𝐾 → ( ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) → ( ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |
| 112 |
111
|
com45 |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝐹 : 𝐵 ⟶ 𝐶 → ( 𝐿 = 𝐾 → ( ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ( ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) → ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |
| 113 |
112
|
3imp2 |
⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) → ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 114 |
75 113
|
mpd |
⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) |
| 115 |
3 4 5 1 8 9
|
islmhm3 |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 116 |
115
|
adantr |
⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 117 |
70 71 114 116
|
mpbir3and |
⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 118 |
29 117
|
impbida |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) ) |