Metamath Proof Explorer


Theorem islmhm2

Description: A one-equation proof of linearity of a left module homomorphism, similar to df-lss . (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses islmhm2.b B=BaseS
islmhm2.c C=BaseT
islmhm2.k K=ScalarS
islmhm2.l L=ScalarT
islmhm2.e E=BaseK
islmhm2.p +˙=+S
islmhm2.q ˙=+T
islmhm2.m ·˙=S
islmhm2.n ×˙=T
Assertion islmhm2 SLModTLModFSLMHomTF:BCL=KxEyBzBFx·˙y+˙z=x×˙Fy˙Fz

Proof

Step Hyp Ref Expression
1 islmhm2.b B=BaseS
2 islmhm2.c C=BaseT
3 islmhm2.k K=ScalarS
4 islmhm2.l L=ScalarT
5 islmhm2.e E=BaseK
6 islmhm2.p +˙=+S
7 islmhm2.q ˙=+T
8 islmhm2.m ·˙=S
9 islmhm2.n ×˙=T
10 1 2 lmhmf FSLMHomTF:BC
11 3 4 lmhmsca FSLMHomTL=K
12 lmghm FSLMHomTFSGrpHomT
13 12 adantr FSLMHomTxEyBzBFSGrpHomT
14 lmhmlmod1 FSLMHomTSLMod
15 14 adantr FSLMHomTxEyBzBSLMod
16 simpr1 FSLMHomTxEyBzBxE
17 simpr2 FSLMHomTxEyBzByB
18 1 3 8 5 lmodvscl SLModxEyBx·˙yB
19 15 16 17 18 syl3anc FSLMHomTxEyBzBx·˙yB
20 simpr3 FSLMHomTxEyBzBzB
21 1 6 7 ghmlin FSGrpHomTx·˙yBzBFx·˙y+˙z=Fx·˙y˙Fz
22 13 19 20 21 syl3anc FSLMHomTxEyBzBFx·˙y+˙z=Fx·˙y˙Fz
23 3 5 1 8 9 lmhmlin FSLMHomTxEyBFx·˙y=x×˙Fy
24 23 3adant3r3 FSLMHomTxEyBzBFx·˙y=x×˙Fy
25 24 oveq1d FSLMHomTxEyBzBFx·˙y˙Fz=x×˙Fy˙Fz
26 22 25 eqtrd FSLMHomTxEyBzBFx·˙y+˙z=x×˙Fy˙Fz
27 26 ralrimivvva FSLMHomTxEyBzBFx·˙y+˙z=x×˙Fy˙Fz
28 10 11 27 3jca FSLMHomTF:BCL=KxEyBzBFx·˙y+˙z=x×˙Fy˙Fz
29 28 adantl SLModTLModFSLMHomTF:BCL=KxEyBzBFx·˙y+˙z=x×˙Fy˙Fz
30 lmodgrp SLModSGrp
31 lmodgrp TLModTGrp
32 30 31 anim12i SLModTLModSGrpTGrp
33 32 adantr SLModTLModF:BCL=KxEyBzBFx·˙y+˙z=x×˙Fy˙FzSGrpTGrp
34 simpr1 SLModTLModF:BCL=KxEyBzBFx·˙y+˙z=x×˙Fy˙FzF:BC
35 3 lmodring SLModKRing
36 35 ad2antrr SLModTLModF:BCL=KKRing
37 eqid 1K=1K
38 5 37 ringidcl KRing1KE
39 oveq1 x=1Kx·˙y=1K·˙y
40 39 fvoveq1d x=1KFx·˙y+˙z=F1K·˙y+˙z
41 oveq1 x=1Kx×˙Fy=1K×˙Fy
42 41 oveq1d x=1Kx×˙Fy˙Fz=1K×˙Fy˙Fz
43 40 42 eqeq12d x=1KFx·˙y+˙z=x×˙Fy˙FzF1K·˙y+˙z=1K×˙Fy˙Fz
44 43 2ralbidv x=1KyBzBFx·˙y+˙z=x×˙Fy˙FzyBzBF1K·˙y+˙z=1K×˙Fy˙Fz
45 44 rspcv 1KExEyBzBFx·˙y+˙z=x×˙Fy˙FzyBzBF1K·˙y+˙z=1K×˙Fy˙Fz
46 36 38 45 3syl SLModTLModF:BCL=KxEyBzBFx·˙y+˙z=x×˙Fy˙FzyBzBF1K·˙y+˙z=1K×˙Fy˙Fz
47 simplll SLModTLModF:BCL=KyBzBSLMod
48 simprl SLModTLModF:BCL=KyBzByB
49 1 3 8 37 lmodvs1 SLModyB1K·˙y=y
50 47 48 49 syl2anc SLModTLModF:BCL=KyBzB1K·˙y=y
51 50 fvoveq1d SLModTLModF:BCL=KyBzBF1K·˙y+˙z=Fy+˙z
52 simplrr SLModTLModF:BCL=KyBzBL=K
53 52 fveq2d SLModTLModF:BCL=KyBzB1L=1K
54 53 oveq1d SLModTLModF:BCL=KyBzB1L×˙Fy=1K×˙Fy
55 simpllr SLModTLModF:BCL=KyBzBTLMod
56 simplrl SLModTLModF:BCL=KyBzBF:BC
57 56 48 ffvelcdmd SLModTLModF:BCL=KyBzBFyC
58 eqid 1L=1L
59 2 4 9 58 lmodvs1 TLModFyC1L×˙Fy=Fy
60 55 57 59 syl2anc SLModTLModF:BCL=KyBzB1L×˙Fy=Fy
61 54 60 eqtr3d SLModTLModF:BCL=KyBzB1K×˙Fy=Fy
62 61 oveq1d SLModTLModF:BCL=KyBzB1K×˙Fy˙Fz=Fy˙Fz
63 51 62 eqeq12d SLModTLModF:BCL=KyBzBF1K·˙y+˙z=1K×˙Fy˙FzFy+˙z=Fy˙Fz
64 63 2ralbidva SLModTLModF:BCL=KyBzBF1K·˙y+˙z=1K×˙Fy˙FzyBzBFy+˙z=Fy˙Fz
65 46 64 sylibd SLModTLModF:BCL=KxEyBzBFx·˙y+˙z=x×˙Fy˙FzyBzBFy+˙z=Fy˙Fz
66 65 exp32 SLModTLModF:BCL=KxEyBzBFx·˙y+˙z=x×˙Fy˙FzyBzBFy+˙z=Fy˙Fz
67 66 3imp2 SLModTLModF:BCL=KxEyBzBFx·˙y+˙z=x×˙Fy˙FzyBzBFy+˙z=Fy˙Fz
68 34 67 jca SLModTLModF:BCL=KxEyBzBFx·˙y+˙z=x×˙Fy˙FzF:BCyBzBFy+˙z=Fy˙Fz
69 1 2 6 7 isghm FSGrpHomTSGrpTGrpF:BCyBzBFy+˙z=Fy˙Fz
70 33 68 69 sylanbrc SLModTLModF:BCL=KxEyBzBFx·˙y+˙z=x×˙Fy˙FzFSGrpHomT
71 simpr2 SLModTLModF:BCL=KxEyBzBFx·˙y+˙z=x×˙Fy˙FzL=K
72 eqid 0S=0S
73 eqid 0T=0T
74 72 73 ghmid FSGrpHomTF0S=0T
75 70 74 syl SLModTLModF:BCL=KxEyBzBFx·˙y+˙z=x×˙Fy˙FzF0S=0T
76 30 ad3antrrr SLModTLModF:BCL=KF0S=0TxEyBSGrp
77 1 72 grpidcl SGrp0SB
78 oveq2 z=0Sx·˙y+˙z=x·˙y+˙0S
79 78 fveq2d z=0SFx·˙y+˙z=Fx·˙y+˙0S
80 fveq2 z=0SFz=F0S
81 80 oveq2d z=0Sx×˙Fy˙Fz=x×˙Fy˙F0S
82 79 81 eqeq12d z=0SFx·˙y+˙z=x×˙Fy˙FzFx·˙y+˙0S=x×˙Fy˙F0S
83 82 rspcv 0SBzBFx·˙y+˙z=x×˙Fy˙FzFx·˙y+˙0S=x×˙Fy˙F0S
84 76 77 83 3syl SLModTLModF:BCL=KF0S=0TxEyBzBFx·˙y+˙z=x×˙Fy˙FzFx·˙y+˙0S=x×˙Fy˙F0S
85 simplll SLModTLModF:BCL=KF0S=0TxEyBSLMod
86 simprl SLModTLModF:BCL=KF0S=0TxEyBxE
87 simprr SLModTLModF:BCL=KF0S=0TxEyByB
88 85 86 87 18 syl3anc SLModTLModF:BCL=KF0S=0TxEyBx·˙yB
89 1 6 72 grprid SGrpx·˙yBx·˙y+˙0S=x·˙y
90 76 88 89 syl2anc SLModTLModF:BCL=KF0S=0TxEyBx·˙y+˙0S=x·˙y
91 90 fveq2d SLModTLModF:BCL=KF0S=0TxEyBFx·˙y+˙0S=Fx·˙y
92 simplr3 SLModTLModF:BCL=KF0S=0TxEyBF0S=0T
93 92 oveq2d SLModTLModF:BCL=KF0S=0TxEyBx×˙Fy˙F0S=x×˙Fy˙0T
94 simpllr SLModTLModF:BCL=KF0S=0TxEyBTLMod
95 94 31 syl SLModTLModF:BCL=KF0S=0TxEyBTGrp
96 simplr2 SLModTLModF:BCL=KF0S=0TxEyBL=K
97 96 fveq2d SLModTLModF:BCL=KF0S=0TxEyBBaseL=BaseK
98 97 5 eqtr4di SLModTLModF:BCL=KF0S=0TxEyBBaseL=E
99 86 98 eleqtrrd SLModTLModF:BCL=KF0S=0TxEyBxBaseL
100 simplr1 SLModTLModF:BCL=KF0S=0TxEyBF:BC
101 100 87 ffvelcdmd SLModTLModF:BCL=KF0S=0TxEyBFyC
102 eqid BaseL=BaseL
103 2 4 9 102 lmodvscl TLModxBaseLFyCx×˙FyC
104 94 99 101 103 syl3anc SLModTLModF:BCL=KF0S=0TxEyBx×˙FyC
105 2 7 73 grprid TGrpx×˙FyCx×˙Fy˙0T=x×˙Fy
106 95 104 105 syl2anc SLModTLModF:BCL=KF0S=0TxEyBx×˙Fy˙0T=x×˙Fy
107 93 106 eqtrd SLModTLModF:BCL=KF0S=0TxEyBx×˙Fy˙F0S=x×˙Fy
108 91 107 eqeq12d SLModTLModF:BCL=KF0S=0TxEyBFx·˙y+˙0S=x×˙Fy˙F0SFx·˙y=x×˙Fy
109 84 108 sylibd SLModTLModF:BCL=KF0S=0TxEyBzBFx·˙y+˙z=x×˙Fy˙FzFx·˙y=x×˙Fy
110 109 ralimdvva SLModTLModF:BCL=KF0S=0TxEyBzBFx·˙y+˙z=x×˙Fy˙FzxEyBFx·˙y=x×˙Fy
111 110 3exp2 SLModTLModF:BCL=KF0S=0TxEyBzBFx·˙y+˙z=x×˙Fy˙FzxEyBFx·˙y=x×˙Fy
112 111 com45 SLModTLModF:BCL=KxEyBzBFx·˙y+˙z=x×˙Fy˙FzF0S=0TxEyBFx·˙y=x×˙Fy
113 112 3imp2 SLModTLModF:BCL=KxEyBzBFx·˙y+˙z=x×˙Fy˙FzF0S=0TxEyBFx·˙y=x×˙Fy
114 75 113 mpd SLModTLModF:BCL=KxEyBzBFx·˙y+˙z=x×˙Fy˙FzxEyBFx·˙y=x×˙Fy
115 3 4 5 1 8 9 islmhm3 SLModTLModFSLMHomTFSGrpHomTL=KxEyBFx·˙y=x×˙Fy
116 115 adantr SLModTLModF:BCL=KxEyBzBFx·˙y+˙z=x×˙Fy˙FzFSLMHomTFSGrpHomTL=KxEyBFx·˙y=x×˙Fy
117 70 71 114 116 mpbir3and SLModTLModF:BCL=KxEyBzBFx·˙y+˙z=x×˙Fy˙FzFSLMHomT
118 29 117 impbida SLModTLModFSLMHomTF:BCL=KxEyBzBFx·˙y+˙z=x×˙Fy˙Fz