Metamath Proof Explorer


Theorem islmhm3

Description: Property of a module homomorphism, similar to ismhm . (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Hypotheses islmhm.k K=ScalarS
islmhm.l L=ScalarT
islmhm.b B=BaseK
islmhm.e E=BaseS
islmhm.m ·˙=S
islmhm.n ×˙=T
Assertion islmhm3 SLModTLModFSLMHomTFSGrpHomTL=KxByEFx·˙y=x×˙Fy

Proof

Step Hyp Ref Expression
1 islmhm.k K=ScalarS
2 islmhm.l L=ScalarT
3 islmhm.b B=BaseK
4 islmhm.e E=BaseS
5 islmhm.m ·˙=S
6 islmhm.n ×˙=T
7 1 2 3 4 5 6 islmhm FSLMHomTSLModTLModFSGrpHomTL=KxByEFx·˙y=x×˙Fy
8 7 baib SLModTLModFSLMHomTFSGrpHomTL=KxByEFx·˙y=x×˙Fy