Description: Property of being a homomorphism of left modules. (Contributed by Stefan O'Rear, 1-Jan-2015) (Proof shortened by Mario Carneiro, 30-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | islmhm.k | |
|
islmhm.l | |
||
islmhm.b | |
||
islmhm.e | |
||
islmhm.m | |
||
islmhm.n | |
||
Assertion | islmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islmhm.k | |
|
2 | islmhm.l | |
|
3 | islmhm.b | |
|
4 | islmhm.e | |
|
5 | islmhm.m | |
|
6 | islmhm.n | |
|
7 | df-lmhm | |
|
8 | 7 | elmpocl | |
9 | oveq12 | |
|
10 | fvexd | |
|
11 | simplr | |
|
12 | 11 | fveq2d | |
13 | 12 2 | eqtr4di | |
14 | simpr | |
|
15 | simpll | |
|
16 | 15 | fveq2d | |
17 | 14 16 | eqtrd | |
18 | 17 1 | eqtr4di | |
19 | 13 18 | eqeq12d | |
20 | 18 | fveq2d | |
21 | 20 3 | eqtr4di | |
22 | 15 | fveq2d | |
23 | 22 4 | eqtr4di | |
24 | 15 | fveq2d | |
25 | 24 5 | eqtr4di | |
26 | 25 | oveqd | |
27 | 26 | fveq2d | |
28 | 11 | fveq2d | |
29 | 28 6 | eqtr4di | |
30 | 29 | oveqd | |
31 | 27 30 | eqeq12d | |
32 | 23 31 | raleqbidv | |
33 | 21 32 | raleqbidv | |
34 | 19 33 | anbi12d | |
35 | 10 34 | sbcied | |
36 | 9 35 | rabeqbidv | |
37 | ovex | |
|
38 | 37 | rabex | |
39 | 36 7 38 | ovmpoa | |
40 | 39 | eleq2d | |
41 | fveq1 | |
|
42 | fveq1 | |
|
43 | 42 | oveq2d | |
44 | 41 43 | eqeq12d | |
45 | 44 | 2ralbidv | |
46 | 45 | anbi2d | |
47 | 46 | elrab | |
48 | 3anass | |
|
49 | 47 48 | bitr4i | |
50 | 40 49 | bitrdi | |
51 | 8 50 | biadanii | |