| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islmhm.k |
|
| 2 |
|
islmhm.l |
|
| 3 |
|
islmhm.b |
|
| 4 |
|
islmhm.e |
|
| 5 |
|
islmhm.m |
|
| 6 |
|
islmhm.n |
|
| 7 |
|
df-lmhm |
|
| 8 |
7
|
elmpocl |
|
| 9 |
|
oveq12 |
|
| 10 |
|
fvexd |
|
| 11 |
|
simplr |
|
| 12 |
11
|
fveq2d |
|
| 13 |
12 2
|
eqtr4di |
|
| 14 |
|
simpr |
|
| 15 |
|
simpll |
|
| 16 |
15
|
fveq2d |
|
| 17 |
14 16
|
eqtrd |
|
| 18 |
17 1
|
eqtr4di |
|
| 19 |
13 18
|
eqeq12d |
|
| 20 |
18
|
fveq2d |
|
| 21 |
20 3
|
eqtr4di |
|
| 22 |
15
|
fveq2d |
|
| 23 |
22 4
|
eqtr4di |
|
| 24 |
15
|
fveq2d |
|
| 25 |
24 5
|
eqtr4di |
|
| 26 |
25
|
oveqd |
|
| 27 |
26
|
fveq2d |
|
| 28 |
11
|
fveq2d |
|
| 29 |
28 6
|
eqtr4di |
|
| 30 |
29
|
oveqd |
|
| 31 |
27 30
|
eqeq12d |
|
| 32 |
23 31
|
raleqbidv |
|
| 33 |
21 32
|
raleqbidv |
|
| 34 |
19 33
|
anbi12d |
|
| 35 |
10 34
|
sbcied |
|
| 36 |
9 35
|
rabeqbidv |
|
| 37 |
|
ovex |
|
| 38 |
37
|
rabex |
|
| 39 |
36 7 38
|
ovmpoa |
|
| 40 |
39
|
eleq2d |
|
| 41 |
|
fveq1 |
|
| 42 |
|
fveq1 |
|
| 43 |
42
|
oveq2d |
|
| 44 |
41 43
|
eqeq12d |
|
| 45 |
44
|
2ralbidv |
|
| 46 |
45
|
anbi2d |
|
| 47 |
46
|
elrab |
|
| 48 |
|
3anass |
|
| 49 |
47 48
|
bitr4i |
|
| 50 |
40 49
|
bitrdi |
|
| 51 |
8 50
|
biadanii |
|