Metamath Proof Explorer


Theorem islmhm

Description: Property of being a homomorphism of left modules. (Contributed by Stefan O'Rear, 1-Jan-2015) (Proof shortened by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses islmhm.k K=ScalarS
islmhm.l L=ScalarT
islmhm.b B=BaseK
islmhm.e E=BaseS
islmhm.m ·˙=S
islmhm.n ×˙=T
Assertion islmhm FSLMHomTSLModTLModFSGrpHomTL=KxByEFx·˙y=x×˙Fy

Proof

Step Hyp Ref Expression
1 islmhm.k K=ScalarS
2 islmhm.l L=ScalarT
3 islmhm.b B=BaseK
4 islmhm.e E=BaseS
5 islmhm.m ·˙=S
6 islmhm.n ×˙=T
7 df-lmhm LMHom=sLMod,tLModfsGrpHomt|[˙Scalars/w]˙Scalart=wxBasewyBasesfxsy=xtfy
8 7 elmpocl FSLMHomTSLModTLMod
9 oveq12 s=St=TsGrpHomt=SGrpHomT
10 fvexd s=St=TScalarsV
11 simplr s=St=Tw=Scalarst=T
12 11 fveq2d s=St=Tw=ScalarsScalart=ScalarT
13 12 2 eqtr4di s=St=Tw=ScalarsScalart=L
14 simpr s=St=Tw=Scalarsw=Scalars
15 simpll s=St=Tw=Scalarss=S
16 15 fveq2d s=St=Tw=ScalarsScalars=ScalarS
17 14 16 eqtrd s=St=Tw=Scalarsw=ScalarS
18 17 1 eqtr4di s=St=Tw=Scalarsw=K
19 13 18 eqeq12d s=St=Tw=ScalarsScalart=wL=K
20 18 fveq2d s=St=Tw=ScalarsBasew=BaseK
21 20 3 eqtr4di s=St=Tw=ScalarsBasew=B
22 15 fveq2d s=St=Tw=ScalarsBases=BaseS
23 22 4 eqtr4di s=St=Tw=ScalarsBases=E
24 15 fveq2d s=St=Tw=Scalarss=S
25 24 5 eqtr4di s=St=Tw=Scalarss=·˙
26 25 oveqd s=St=Tw=Scalarsxsy=x·˙y
27 26 fveq2d s=St=Tw=Scalarsfxsy=fx·˙y
28 11 fveq2d s=St=Tw=Scalarst=T
29 28 6 eqtr4di s=St=Tw=Scalarst=×˙
30 29 oveqd s=St=Tw=Scalarsxtfy=x×˙fy
31 27 30 eqeq12d s=St=Tw=Scalarsfxsy=xtfyfx·˙y=x×˙fy
32 23 31 raleqbidv s=St=Tw=ScalarsyBasesfxsy=xtfyyEfx·˙y=x×˙fy
33 21 32 raleqbidv s=St=Tw=ScalarsxBasewyBasesfxsy=xtfyxByEfx·˙y=x×˙fy
34 19 33 anbi12d s=St=Tw=ScalarsScalart=wxBasewyBasesfxsy=xtfyL=KxByEfx·˙y=x×˙fy
35 10 34 sbcied s=St=T[˙Scalars/w]˙Scalart=wxBasewyBasesfxsy=xtfyL=KxByEfx·˙y=x×˙fy
36 9 35 rabeqbidv s=St=TfsGrpHomt|[˙Scalars/w]˙Scalart=wxBasewyBasesfxsy=xtfy=fSGrpHomT|L=KxByEfx·˙y=x×˙fy
37 ovex SGrpHomTV
38 37 rabex fSGrpHomT|L=KxByEfx·˙y=x×˙fyV
39 36 7 38 ovmpoa SLModTLModSLMHomT=fSGrpHomT|L=KxByEfx·˙y=x×˙fy
40 39 eleq2d SLModTLModFSLMHomTFfSGrpHomT|L=KxByEfx·˙y=x×˙fy
41 fveq1 f=Ffx·˙y=Fx·˙y
42 fveq1 f=Ffy=Fy
43 42 oveq2d f=Fx×˙fy=x×˙Fy
44 41 43 eqeq12d f=Ffx·˙y=x×˙fyFx·˙y=x×˙Fy
45 44 2ralbidv f=FxByEfx·˙y=x×˙fyxByEFx·˙y=x×˙Fy
46 45 anbi2d f=FL=KxByEfx·˙y=x×˙fyL=KxByEFx·˙y=x×˙Fy
47 46 elrab FfSGrpHomT|L=KxByEfx·˙y=x×˙fyFSGrpHomTL=KxByEFx·˙y=x×˙Fy
48 3anass FSGrpHomTL=KxByEFx·˙y=x×˙FyFSGrpHomTL=KxByEFx·˙y=x×˙Fy
49 47 48 bitr4i FfSGrpHomT|L=KxByEfx·˙y=x×˙fyFSGrpHomTL=KxByEFx·˙y=x×˙Fy
50 40 49 bitrdi SLModTLModFSLMHomTFSGrpHomTL=KxByEFx·˙y=x×˙Fy
51 8 50 biadanii FSLMHomTSLModTLModFSGrpHomTL=KxByEFx·˙y=x×˙Fy